花岗质岩石在脆塑性转化域的变形机制
党嘉祥, 周永胜
中国地震局地质研究所, 地震动力学国家重点实验室, 北京 100029

〔作者简介〕 党嘉祥, 男, 1981年生, 2018年于中国地震局地质研究所获构造物理专业博士学位, 从事高温高压岩石力学研究, E-mail: dangjiaxiang@ies.ac.cn

摘要

地震精定位结果显示, 大陆地震多数集中于大陆地壳的多震层内, 该多震层向下收敛于中部地壳的脆塑性转化带。 地壳脆塑性转化带的主要成分为花岗质岩石, 前人通常用石英-斜长石的组合代替花岗岩进行变形研究, 反演转化带的深度和变形特征, 并且认为花岗岩的变形强度由弱项矿物——石英的塑性变形控制。 近年来, 实验和野外研究均表明钾长石的变形强度高于石英和斜长石。 大应变量变形实验和野外韧性剪切带的研究结果显示, 在中地壳脆塑性转化带内, 钾长石变形以脆性破裂为主, 斜长石和石英通常表现为动态重结晶。 因此, 用石英和斜长石的组合体代替花岗岩来反演断层的变形特征, 无法全面、 真实地解释断层深部脆塑性转化带的变形特征。 文中总结了花岗岩在野外和实验变形条件下的研究结果, 并分析了花岗岩的主要组成矿物——石英、 斜长石和钾长石的变形特征以及其温压条件的不同步性, 讨论了断层深部脆塑性转化带的失稳条件。

关键词: 花岗岩; 钾长石; 脆塑性转化; 变形机制; 断层失稳
中图分类号:P313 文献标志码:A 文章编号:0253-4967(2020)01-0198-14
DEFORMATION MECHANISM OF GRANITIC ROCKS IN BRITTLE-PLASTIC TRANSITION ZONE
DANG Jia-xiang, ZHOU Yong-sheng
State Key Laboratory of Earthquake Dynamics, Institute of Geology,China Earthquake Administration, Beijing 100029, China
Abstract

Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-plastic transition. As the bottom of seismogenic fault, the dynamic characteristics of the frictional-plastic transition zone and plastic zone are very important for the seismogenic fault during seismic cycles. Granite is the major composition of the crust in the brittle-plastic transition zone. Compared to calcite, quartz, plagioclase, pyroxene and olivine, the rheologic data of K-feldspar is scarce. Previous deformation studies of granite performed on a quartz-plagioclase aggregate revealed that the deformation strength of granite was similar with quartz. In the brittle-plastic transition zone, the deformation characteristics of granite are very complex, temperature of brittle-plastic transition of quartz is much lower than that of feldspar under both natural deformation condition and lab deformation condition. In the mylonite deformed under the middle crust deformation condition, quartz grains are elongated or fine-grained via dislocation creep, dynamic recrystallization and superplastic flow, plagioclase grains are fine-grained by bugling recrystallization, K-feldspar are fine-grained by micro-fractures. Recently, both field and experimental studies presented that the strength of K-feldspar is much higher than that of quartz and plagioclase. The same deformation mechanism of K-feldspar and plagioclase occurred under different temperature and pressure conditions, these conditions of K-feldspar are higher than plagioclase. The strength of granite is similar to feldspar while it contains a high content of K-feldspar. High shear strain experiment studies reveal that granite is deformed by local ductile shear zones in the brittle-plastic transition zone. In the ductile shear zone, K-feldspar is brittle fractured, plagioclase are bugling and sub-grain rotation re-crystallized, and quartz grains are plastic elongated. These local shear zones are altered to local slip-zones with strain increasing. Abundances of K-feldspar, plagioclase and mica are higher in the slip-zones than that in other portions of the samples (K-feldspar is the highest), and abundance of quartz is decreased. Amorphous material is easily formed by shear strain acting on brittle fine-grained K-feldspar and re-crystallized mica and plagioclase. Ductile shear zone is the major deformation mechanism of fault zones in the brittle-plastic transition zone. There is a model of a fault failed by bearing constant shear strain in the transition zone: local shear zones are formed along the fractured K-feldspar grains; plagioclase and quartz are fine-grained by recrystallization, K-feldspar is crushed into fine grains, these small grains and mica grains partially change to amorphous material, local slip-zones are generated by these small grains and the amorphous materials; then, the fault should be failed via two ways, 1)the local slip-zones contact to a throughout slip-zone in the center of the fault zone, the fault is failed along this slip-zone, and 2)the local slip-zones lead to bigger mineral grains that are in contact with each other, stress is concentrated between these big grains, the fault is failed by these big grains that are fractured. Thus, the real deformation character of the granite can’t be revealed by studies performing on a quartz-plagioclase aggregate. This paper reports the different deformation characters between K-feldspar, plagioclase and quartz under the same pressure and temperature condition based on previous studies. Then, we discuss a mode of instability of a fault zone in the brittle-plastic transition zone. It is still unclear that how many contents of weak mineral phase(or strong mineral phase)will control the strength of a three-mineral-phase granite. Rheological character of K-feldspar is very important for study of the deformation characteristic of the granitic rocks.

Keyword: granite; K-feldspar; brittle-plastic transition; deformation mechanism; instability of fault
0 引言

近年来, 经地壳内部结构和地震精定位研究发现大陆地震多数集中于大陆地壳的多震层内(李乐等, 2007; Pec et al., 2012, 2016; 宋美琴等, 2012), 该多震层在深部收敛于地壳的脆塑性转换带。 作为地震断层带的底部, 脆塑性转换带和其下的塑性变形带无疑在整个地震循环中有着重要的动力学作用。 大陆地壳脆塑性转化带通常由花岗岩质岩石组成, 与方解石、 石英、 斜长石(钙长石)、 辉石和橄榄石相比, 针对钾长石的流变实验研究非常少。 因此, 人们通常用石英-斜长石的组合代替花岗岩进行实验室变形研究, 其变形机制由2种端元组分(石英和长石)控制(Rutter et al., 1995, 2006; Xiao et al., 2002; Mecklenburgh et al., 2003)。 针对2种端元组分(石英和斜长石)组成的花岗质岩石的实验研究表明, 在塑性流变域花岗岩的变形特征由石英的塑性变形控制(Rutter et al., 1995, 2006; Xiao et al., 2002; Mecklenburgh et al., 2003)。 然而, 在脆塑性转化域, 花岗岩的变形要复杂得多, 无论在实验室还是天然环境下石英发生脆塑性转化的温度条件均低于长石(Rybacki et al., 2000, 2004, 2006; Rutter et al., 2004a, b)。 在中地壳脆塑性转化带的变形条件下, 石英发生位错蠕变、 动态重结晶恢复甚至超塑性流动, 导致其被压扁拉长、 亚颗粒化; 斜长石常常出现膨凸重结晶作用, 而钾长石常常呈现变形的残斑、 晶内破裂、 微破裂等脆性变形特征(White et al., 1986; Michibayashi, 1996; Ree et al., 2005; Trouw et al., 2010)。

近年来, 针对含钾长石的花岗岩的变形过程在野外和实验室均进行了大量的研究(Fitz Gerald et al., 1993; Stü nitz et al., 1993; Trouw et al., 2010; Pec et al., 2012, 2016; Dang et al., 2018), 结果表明钾长石的变形强度明显高于斜长石, 同时钾长石在高温下容易发生出溶, 从而使得花岗岩的变形特征比石英-斜长石组合体要复杂得多。 用斜长石变形代替钾长石变形, 不能真正认识花岗岩的半脆性-塑性变形。 本文通过综合分析石英、 斜长石和钾长石3种矿物变形特征的差异性在野外和实验室的观测结果, 讨论了断层脆塑性转化带的变形机制和失稳条件及其对强震孕育和发生的重要意义。

1 石英脆塑性转化的变形行为

野外观测结果显示, 在低于低绿片岩相的变形条件下, 石英变形以脆性破裂为主(Evans, 1988)。 根据韧性剪切带中石英的变形组构, 确定石英发生脆塑性转化的温度为280~350℃(Stockhert et al., 1999)。 Hirth等(1992)针对石英的实验研究结果表明: 在位错蠕变域, 从低温到高温, 石英表现出3种不同的变形特征, 即低温颗粒边界膨突、 中温亚颗粒旋转和高温颗粒边界迁移。 对天然韧性剪切带和糜棱岩带中的石英进行变形组构研究也得到类似的结果(Behrmann et al., 1987; Dunlap et al., 1997; Stockhert et al., 1999; Zulauf, 2001; Stipp et al., 2002, 2003), 即在不同的温度条件下石英发生位错蠕变的变形特征不同: 在280~400℃条件下为膨突重结晶(图1a); 在400~500℃条件下为亚颗粒旋转重结晶(图1b); 在500~700℃条件下为颗粒边界迁移重结晶(图1c)(Stipp et al., 2002; 周永胜等, 2008)。 因此, 在中地壳绿片岩相环境中, 韧性剪切带内的石英以塑性变形为主, 发生位错蠕变、 动态重结晶恢复甚至超塑性流动, 石英颗粒出现压扁拉长、 亚颗粒化和重结晶等现象。

图 1 石英动态重结晶的3种模式(Stipp et al., 2002)
a 膨突重结晶; b 亚颗粒旋转重结晶形成的核幔构造; c 颗粒边界迁移形成的缝合线状
Fig. 1 Characteristic microstructures of the dynamic recrystallization of quartz(after Stipp et al., 2002).

2 斜长石脆塑性转化的变形行为

大量针对斜长石的变形研究结果显示, 在实验室条件下得到的变形特征与自然状态类似(周永胜等, 2000)。 斜长石变形特征的演化与石英有很大的相似性, 其脆性域的温压范围大, 脆塑性转化温度比石英约高150~200℃。 为产生相同的变形特征, 实验室的温压条件(特别是压力)比自然界要高得多。 在实验室条件下, 当围压< 500MPa、 温度< 900℃时, 变形以脆性破裂为主, 没有塑性变形的迹象(Tullis et al., 1992; Rybacki et al., 2000, 2004)。 在天然变形条件下, 低绿片岩相斜长石为完全脆性破裂, 中绿片岩相仍以脆性微破裂为主。

由于斜长石节理发育, 其变形特征比石英复杂, 特别是在脆塑性转化域中。 在实验室条件下, 随着温压的升高, 斜长石将经历以下几个变形阶段: 脆性破裂、 碎裂流动、 碎裂流动— 位错蠕变、 位错蠕变和位错— 扩散蠕变等, 它们分别与不变质— 低绿片岩相变质、 中— 高绿片岩相、 低— 中角闪岩相、 高角闪岩相— 麻粒岩相和麻粒岩相的变质条件对应(Fitz Gerald et al., 1993; Stü nitz et al., 1993)。 1)在不变质— 低绿片岩相变形条件下的脆性变形阶段, 主破裂面单斜或共轭; 随着温压升高, 主破裂面与σ 1的夹角从30° 转变为40° ~45° 。 2)在相当于中绿片岩相变形条件下的碎裂流动阶段, 变形以晶粒规模的微破裂和晶体波状消光为主, 局部出现颗粒边界成核、 亚颗粒边界旋转等重结晶。 3)在相当于高绿片岩相变形条件下的碎裂流动阶段, 变形以微裂隙与重结晶为主, 重结晶为亚颗粒边界迁移、 旋转, 形成愈合裂纹、 核幔构造、 波状消光、 蠕英石、 机械双晶、 扭折。 4)在相当于低— 中角闪岩相变形条件下的碎裂流动— 位错蠕变阶段, 变形以重结晶为主, 表现为成核、 亚颗粒边界旋转、 边界突起(低应变)、 亚颗粒边界迁移(高应变), 局部出现微破裂, 形成变形带、 核幔构造、 蠕英石、 扭折、 机械双晶、 波状消光。 5)在类似于高角闪岩相— 麻粒岩相变形条件下的位错蠕变阶段, 稳态蠕变和恢复以重结晶为主, 表现为新颗粒边界迁移(高应变)、 旋转(低应变), 形成核幔构造、 变形带、 扭折、 机械双晶、 波状消光、 颗粒边界化学成分间重结晶, 局部含微破裂。 6)接近于麻粒岩相变形条件的位错— 扩散蠕变阶段, 稳态蠕变和恢复以重结晶为主, 并有边界扩散, 重结晶为亚颗粒边界成核、 旋转、 突起和迁移, 形成强烈定向的面状组构、 波状消光、 机械双晶、 颗粒边界不同化学成分间重结晶。 由此可知, 长石在高温下不易产生攀移, 而易产生颗粒边界迁移、 旋转、 突起等重结晶。 晶界迁移形成的重结晶颗粒由于没有产生应变, 易发生滑移, 引起位错缠结, 导致加工硬化。 当加工硬化后, 又引发新的边界迁移, 最终形成无应变的颗粒(Tullis et al., 1987)。

斜长石在位错蠕变域同样表现出低温颗粒边界膨突、 中温亚颗粒旋转以及高温颗粒边界迁移等3种不同的变形特征。 在天然变形条件下: 300~400℃时, 在晶内破裂的基础上, 开始出现少量位错滑移; 400~500℃时, 以晶内位错滑移为主导, 并随温度升高开始出现少量位错攀移(Borges et al., 1980; Gapais, 1989; Gates et al., 1989; Tullis et al., 1991); 500~650℃时, 为以膨突重结晶为主的动态重结晶; 650~700℃时, 变形表现为膨突重结晶和亚颗粒旋转重结晶共存的特征, 通常发育重结晶小颗粒围绕较大母颗粒的“ 核-幔” 构造(Hay et al., 1987; Rosenberg et al., 2003); 700~800℃时, 亚颗粒旋转重结晶(Lafrance et al., 1998); 800~850℃时, 由亚颗粒旋转重结晶向颗粒边界迁移重结晶转变; 温度> 850℃时, 颗粒边界迁移重结晶(Anderson et al., 1983)。

3 钾长石与斜长石变形特征的差异性
3.1 实验研究结果

Dang等(2017)利用采于四川泸定地区的浅色花岗岩进行了高温高压变形实验, 初始样品主要由石英(36%)、 斜长石(26%)和钾长石(34%)组成。 为了研究花岗岩的脆塑性转化域的变形特征, 样品变形条件为围压1atm、 100MPa和300MPa, 温度区间为850~1 050℃, 应变速率为1× 10-5/s。

图 2a给出了所有变形实验的应力-应变曲线。 围压为300MPa时, 随着温度升高样品的强度明显降低; 随应变量的增加, 所有样品在达到极限强度后均表现出强度弱化的特征; 样品达到最大强度的应变值随温度升高而减小(图2a)。 在950℃的条件下, 当围压从300MPa降低至100MPa和1atm时, 样品的最大强度也明显降低(由221MPa降低至45MPa和17MPa)。 随着围压降低, 围压为100MPa时应力应-变曲线表现出稳态流变特征, 而随着应变量的增加, 强度没有出现弱化的现象(图2), 在1atm条件下样品达到最大强度后很快破碎。 围压为300MPa时, 变形后样品的外观照片(图 3)显示: 850℃时, 变形样品破裂主要集中于1条与主应力方向夹角约30° 的主破裂带内; 900~1 000℃时, 变形样品在发生膨突变形的基础上发育有2条共轭的韧性剪切带; 1 050℃的变形样品发育有1条基本垂直于主应力方向且贯穿整个样品的韧性剪切带, 样品发生膨胀的程度从两端到中心依次增加, 而在中心韧性剪切带部位的增加程度最大。 围压为100MPa且温度为950℃时, 变形样品发育有1对共轭的韧性剪切带, 同时样品发生膨突变形, 且在样品的下部有局部表现出破裂特征。 在1atm和950℃的条件下变形样品破碎成粉末。 因此, 在半脆性域内围压对花岗岩样品的变形特征起到了重要影响, 降低围压不仅降低了样品强度, 也使样品的变形特征从弱化变为稳态流变和脆性碎裂。

图 2 a 不同实验条件下花岗岩变形应力-应变曲线(Dang et al., 2017); b 变形样品的最大强度和19%应变时强度随温度的变化Fig. 2 Stress-strain curves for granite samples deformed under different confining pressures and temperatures (Dang et al., 2017)(a). Peak strengths and strength at 19% strain of deformed samples versus temperature(b).

图 3 不同温压条件下变形样品的照片与温压条件对应图Fig. 3 Photographs of deformed samples subjected to a constant strain rate at different temperatures and with different confining pressures.

微观结构分析显示在850~1 150℃温度范围内钾长石的强度明显大于斜长石(表1 )。 在高于900℃的条件下: 斜长石的变形以动态重结晶为主, 随着温度升高逐渐由膨突重结晶转化为亚颗粒旋转重结晶; 钾长石的变形则以脆性破裂为主, 随着温度升高, 从晶内微破裂逐渐转变为穿晶破裂引起的碎裂流动, 同时在高温下出现晶内塑性变形。

表1 不同实验温度下斜长石和钾长石的变形特征(Dang et al., 2017) Table1 Deformation characters of plagioclase and K-feldspar under different experimental temperatures(after Dang et al., 2017)
3.2 天然变形岩石的研究结果

前人对不同温压条件下天然变形样品的观测结果显示: 随着温压条件的升高, 钾长石同样经历了脆性破裂、 碎裂流动、 位错蠕变和扩散蠕变等变形域; 位错蠕变域发育膨突重结晶、 亚颗粒旋转重结晶和颗粒边界迁移重结晶3种变形特征。 然而, 钾长石和斜长石的变形特征表现出明显的温压条件不同步性, 钾长石出现半脆性和塑性变形特征的温压条件明显高于斜长石(Pryer, 1993; Passchier et al., 2005; Trouw et al., 2010)(表2 )。

表2 不同变质环境中斜长石和钾长石的变形特征(Trouw et al., 2010) Table2 Deformation characters of plagioclase and K-feldspar under different deformation conditions(after Trouw et al., 2010)
4 花岗岩剪切实验研究结果

通过剪切变形实验(特别是大应变剪切实验)可以更直观地反演断层深部的变形特征。 Dang等(2017)Pec等(2016)分别针对由石英、 斜长石、 钾长石、 微量绿泥石和云母组成的花岗质岩石和花岗质断层泥进行了剪切变形实验。 围压400MPa、 温度950℃条件下的扭转实验结果表明(Dang et al., 2017): 样品变形以最大剪应变处的韧性剪切带为主; 在韧性剪切带内, 钾长石的变形以碎裂流动为主(图 4), 斜长石的变形以膨突重结晶和亚颗粒旋转重结晶为主(图 4 中的白色箭头), 石英颗粒被剪切拉伸变成长条状分布于钾长石的裂隙内(图 4 中的黄色箭头)。 围压500MPa、 温度500℃条件下的花岗质断层泥大应变剪切实验研究同样显示(Pec et al., 2012, 2016): 在承受主剪应变的滑动带内, 斜长石和石英以塑性变形为主, 钾长石变形以脆性破裂为主(图 5)。 对样品整体和滑动带内的成分分析结果(图 6)显示: 与初始样品相比, 滑动带内石英占比明显降低, 钾长石、 斜长石和云母占比增加, 其中增加最明显的成分为钾长石。 此外, 在滑动带内细粒化的钾长石易与云母和斜长石反应形成非晶质(图5a, b), 随着剪应变量的增加, 钾长石的细粒化程度增加, 同时滑动带内的非晶质程度增加(图5c, d)。

图 4 950℃、 400MPa条件下扭转变形样品的微观结构(Dang et al., 2017)
白色箭头指示重结晶的斜长石, 黄色箭头指示拉伸的石英。 Mic 钾长石; Q 石英; Pla 斜长石
Fig. 4 Microstructure of a sample deformed by torsion at 950℃, 400MPa(after Dang et al., 2017).

图 5 花岗岩半脆性剪切变形微观结构(Pec et al., 2016)
a、 b 低剪应变量的变形样品; c、 d 高剪应变量变形样品。 黄色虚线为局部滑动带边界; 黄色箭头指示卸载引起的微破裂。
PAM 钾长石主导的部分非晶质物质; AM 非晶质; Qtz 石英; Plg 斜长石; Kfs 钾长石; Bt 黑云母; Wm 白云母
Fig. 5 Microstructure of general shear deformed granite under semi-brittle condition(after Pec et al., 2016).

图 6 花岗岩初始样品和变形样品滑动带内的主要成分统计图(Pec et al., 2016)
Qtz 石英; Plg 斜长石; Kfs 钾长石; Bt 黑云母; Wm 白云母
Fig. 6 Composition of initial granite and material within slip zones(after Pec et al., 2016).

5 花岗质岩石在半脆性域内的破裂模型

Marshall等(1977)针对长石在高温下易于出现破裂和微破裂对岩石变形的重要性进行了研究。 此外, 石英和长石变形特征的差异主要由以下2个因素引起(Fitz Gerald et al., 1993; Stü nitz et al., 1993): 1)长石发育有2组节理, 破裂易沿着节理面发育, 从而使得长石破碎为小颗粒, 相反, 石英不发育节理(Tullis et al., 1990); 2)在低温条件下缓慢的Al、 Si扩散阻碍了长石的变形恢复(Grove et al., 1984; Yund, 1986; Yund et al., 1989; Hirth et al., 1992, 1994)。 实验研究获得的由石英、 斜长石和钾长石组成的花岗岩发生脆塑性转化的温度明显高于自然变形条件下的转化温度(Dang et al., 2017), 同样高于实验室条件下石英、 长石以及含有黑云母和角闪石的花岗岩发生脆塑性转化的温度(Tullis et al., 1977, 1985, 1987, 1992, 1996; Paquet et al., 1980, 1981; Dell'Angelo et al., 1987, 1988; Hirth et al., 1989, 1992, 1994; Hadizadeh et al., 1992; Fitz Gerald et al., 1993)。 Dang等(2017)获取的花岗岩变形强度接近Rybacki等(2000)获取的钙长石的强度, 此结果显示当钾长石和斜长石含量较高时, 花岗岩变形强度将由长石主导, 而非前人所述的花岗岩的变形强度由石英主导(Rutter et al., 2006)。

在断层多震层底部的半脆性域内, 断层活动主要形成韧性剪切带(Sibson, 1977)。 在韧性剪切形成的初期, 钾长石变形以碎裂流为主, 斜长石变形以动态重结晶为主, 而石英作为软相矿物, 则发生塑性变形(Dang et al., 2017)。 随剪着应变量(γ )的增大, 钾长石因脆性破裂细粒化, 而斜长石因重结晶细粒化; 当断层强度达到最大时(γ ≈ 1.5), 在C'方向集中形成剪裂; 当γ ≈ 2时, 在剪裂内细粒矿物与其它矿物反应形成非晶质, 从而形成微滑动带, 断层强度开始降低; 随着剪应变的增加, 微滑动带逐渐在S-C方向连通; 微滑动带积累贯穿整个断层或大颗粒接触造成应力集中, 导致断层失稳(Pec et al., 2016)(图 7)。

图 7 花岗岩断层带半脆性剪切变形的微观结构随剪应变演化模型(Pec et al., 2016)Fig. 7 Conceptual model for rheological behavior of faults(after Pec et al., 2016).

6 结论

两相矿物组成的岩石, 其塑性变形一般集中于弱相矿物中, 强相矿物通常发生脆性破裂。 三相矿物组成的岩石变形特征比两相矿物组成的岩石复杂。 当花岗岩中钾长石、 斜长石和石英含量相当时, 花岗岩的变形强度由长石控制。 然而, 对于石英和2种长石比例不同的样品则没有详细的研究资料, 从而无法判定弱相和强相矿物控制样品变形强度时的矿物相占比。 同时, 钾长石和斜长石(钙长石)在实验室和野外条件下都表现出不同的变形特征。 前人对长石流变的实验研究主要集中于合成钙长石方面, 而对钾长石的流变实验研究非常少。 斜长石的实验结果不能完全代替整个长石族的流变特征, 研究钾长石的流变性质对理解花岗岩的变形特征具有重要意义。

参考文献
[1] 李乐, 陈棋福, 陈颙, 2007. 首都圈地震活动构造成因的小震精定位分析[J]. 地球物理学进展, 22(1): 2434.
LI Le, CHEN Qi-fu, CHEN Yong. 2007. Relocated seismicity in Big Beijing area and its tectonic implication[J]. Progress in Geophysics, 22(1): 2434(in Chinese). [本文引用:1]
[2] 宋美琴, 郑勇, 葛粲, , 2012. 山西地震带中小震精确位置及其显示的山西地震构造特征[J]. 地球物理学报, 55(2): 513525.
SONG Mei-qin, ZHENG Yong, GE Can, et al. 2012. Relocation of small to moderate earthquakes in Shanxi Province and its relation to the seismogenic structures[J]. Chinese Journal of Geophysics, 55(2): 513525(in Chinese). [本文引用:1]
[3] 周永胜, 何昌荣, 2000. 地壳岩石变形行为的转变及其温压条件[J]. 地震地质, 22(2): 167178.
ZHOU Yong-sheng, HE Chang-rong. 2000. Deformation behavior transition of crustal rocks and its temperature-pressure conditions[J]. Seismology and Geology, 22(2): 167178(in Chinese). [本文引用:1]
[4] 周永胜, 何昌荣, 杨晓松. 2008. 中地壳韧性剪切带中的水与变形机制[J]. 中国科学, 38(7): 819832.
ZHOU Yong-sheng, HE Chang-rong, YANG Xiao-song. 2008. Water and deformation mechanism in the middle crust ductile shear zone[J]. Science in China, 38(7): 819832(in Chinese). [本文引用:1]
[5] Anderson J L, Osborne R H, Palmer D F. 1983. Cataclastic rocks of the San Gabriel Fault: An expression of deformation at deeper crustal levels in the San Andreas fault zone[J]. Tectonophysics, 98(3): 209251. [本文引用:1]
[6] Behrmann J H, Mainprice D. 1987. Deformation mechanisms in a high-temperature quartz-feldspar mylonite: Evidence for superplastic flow in the lower continental crust[J]. Tectonophysics, 140(2): 297305. [本文引用:1]
[7] Borges F S, White S H. 1980. Microstructural and chemical studies of sheared anorthosites, Roneval, South Harris[J]. Journal of Structural Geology, 2(1-2): 273280. [本文引用:1]
[8] Dang J, Zhou Y, He C, et al. 2018. Mineralogical compositions of fault rocks from surface ruptures of Wenchuan earthquake and implication of mineral transformation during the seismic cycle along Yingxiu-Beichuan Fault, Sichuan Province, China[J]. Mineralogy and Petrology, 112(3): 341355. [本文引用:1]
[9] Dang J, Zhou Y, Rybacki E, et al. 2017. An experimental study on the brittle-plastic transition during deformation of granite[J]. Journal of Asian Earth Sciences, 139: 3039. [本文引用:6]
[10] Dell'Angelo L N, Tullis J. 1988. Experimental deformation of partially melted granitic aggregates[J]. Journal of Metamorphic Geology, 6(4): 495515. [本文引用:1]
[11] Dell'Angelo L N, Tullis J, Yund R A. 1987. Transition from dislocation creep to melt-enhanced diffusion creep in fine-grained granitic aggregates[J]. Tectonophysics, 139(3-4): 325332. [本文引用:1]
[12] Dunlap W J, Hirth G, Teyssier C. 1997. Thermomechanical evolution of a ductile duplex[J]. Tectonics, 16(6): 9831000. [本文引用:1]
[13] Evans J P. 1988. Deformation mechanisms in granitic rocks at shallow crustal levels[J]. Journal of Structural Geology, 10(5): 437443. [本文引用:1]
[14] Fitz Gerald J D, Stünitz H. 1993. Deformation of granitoids at low metamorphic grade. I: Reactions and grain size reduction[J]. Tectonophysics, 221(3-4): 269297. [本文引用:4]
[15] Gapais D. 1989. Shear structures within deformed granites: Mechanical and thermal indicators[J]. Geology, 17(12): 11441147. [本文引用:1]
[16] Gates A E, Glover L. 1989. Alleghanian tectono-thermal evolution of the dextral transcurrent Hylas zone, Virginia Piedmont, USA[J]. Journal of Structural Geology, 11(4): 407419. [本文引用:1]
[17] Grove T, Baker M, Kinzler R. 1984. Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry[J]. Geochimica et Cosmochimica Acta, 48(10): 21132121. [本文引用:1]
[18] Hadizadeh J, Tullis J. 1992. Cataclastic flow and semibrittle deformation of anorthite[J]. Journal of Structural Geology, 14(1): 5763. [本文引用:1]
[19] Hay R S, Evans B. 1987. Chemically induced grain boundary migration in calcite: Temperature dependence, phenomenology, and possible applications to geologic systems[J]. Contributions to Mineralogy and Petrology, 97(1): 127141. [本文引用:1]
[20] Hirth G, Tullis J. 1989. The effects of pressure and porosity on the micromechanics of the brittle-ductile transition in quartzite[J]. Journal of Geophysical Research, 94(B12): 1782517838. [本文引用:1]
[21] Hirth G, Tullis J. 1992. Dislocation creep regimes in quartz aggregates[J]. Journal of Structural Geology, 14(2): 145159. [本文引用:3]
[22] Hirth G, Tullis J. 1994. The brittle-plastic transition in experimentally deformed quartz aggregates[J]. Journal of Geophysical Research, 99(B6): 1173111747. [本文引用:2]
[23] Lafrance B, John B E, Frost B R. 1998. Ultra high-temperature and subsolidus shear zones: Examples from the Poe Mountain anorthosite, Wyoming[J]. Journal of Structural Geology, 20(7): 945955. [本文引用:1]
[24] Marshall D, Mclaren A. 1977. Elastic twinning in experimentally deformed plagioclase feldspars[J]. Physica Status Solidi(a), 41(1): 231240. [本文引用:1]
[25] Mecklenburgh J, Rutter E H. 2003. On the rheology of partially molten synthetic granite[J]. Journal of Structural Geology, 25(10): 15751585. [本文引用:2]
[26] Michibayashi K. 1996. The role of intragranular fracturing on grain size reduction in feldspar during mylonitization[J]. Journal of Structural Geology, 18(1): 1725. [本文引用:1]
[27] Paquet J, François P. 1980. Experimental deformation of partial melted granitic rocks at 600~900℃ and 250MPa confining pressure[J]. Tectonophysics, 68(1-2): 131146. [本文引用:1]
[28] Paquet J, Francois P, Nedelec A. 1981. Effect of partial melting on rock deformation: Experimental and natural evidences on rocks of granitic compositions[J]. Tectonophysics, 78(1-4): 545565. [本文引用:1]
[29] Passchier C W, Trouw R A J. 2005. Microtectonics[M]. Springer, Berlin. [本文引用:1]
[30] Pec M, Stunitz H, Heilbronner R. 2012. Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures[J]. Journal of Structural Geology, 38: 200221. [本文引用:3]
[31] Pec M, Stunitz H, Heilbronner R, et al. 2016. Semi-brittle flow of granitoid fault rocks in experiments[J]. Journal of Geophysical Research: Solid Earth, 121(3): 16771705. [本文引用:5]
[32] Pryer L L. 1993. Microstructures in feldspars from a major crustal thrust zone: The Grenville Front, Ontario, Canada[J]. Journal of Structural Geology, 15(1): 2136. [本文引用:1]
[33] Ree J-H, Kim H S, Han R, et al. 2005. Grain-size reduction of feldspars by fracturing and neocrystallization in a low-grade granitic mylonite and its rheological effect[J]. Tectonophysics, 407(3-4): 227237. [本文引用:1]
[34] Rosenberg C L, Stunitz H. 2003. Deformation and recrystallization of plagioclase along a temperature gradient: An example from the Bergell tonalite[J]. Journal of Structural Geology, 25(3): 389408. [本文引用:1]
[35] Rutter E H, Brodie K H. 2004a. Experimental grain size-sensitive flow of hot-pressed Brazilian quartz aggregates[J]. Journal of Structural Geology, 26(11): 20112023. [本文引用:1]
[36] Rutter E H, Brodie K H. 2004b. Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals[J]. Journal of Structural Geology, 26(2): 259270. [本文引用:1]
[37] Rutter E H, Brodie K H, Irving D H. 2006. Flow of synthetic, wet, partially molten “granite”under undrained conditions: An experimental study[J]. Journal of Geophysical Research: Solid Earth, 111(B6): B06407. [本文引用:3]
[38] Rutter E H, Neumann D H K. 1995. Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas[J]. Journal of Geophysical Research, 100(B8): 15697. [本文引用:2]
[39] Rybacki E, Dresen G. 2004. Deformation mechanism maps for feldspar rocks[J]. Tectonophysics, 382(3-4): 173187. [本文引用:2]
[40] Rybacki E, Dresen G. 2000. Dislocation and diffusion creep of synthetic anorthite aggregates[J]. Journal of Geophysical Research Atmospheres, 105(B11): 2601726036. [本文引用:2]
[41] Rybacki E, Gottschalk M, Wirth R, et al. 2006. Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates[J]. Journal of Geophysical Research, 111(B3): 851851. [本文引用:1]
[42] Sibson R H. 1977. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 133(3): 191213. [本文引用:1]
[43] Stipp M, Stünitz H, Heilbronner R, et al. 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700℃[J]. Journal of Structural Geology, 24(12): 18611884. [本文引用:2]
[44] Stipp M, Tullis J. 2003. The recrystallized grain size piezometer for quartz[J]. Geophysical Research Letters, 30(21): 20882093. [本文引用:1]
[45] Stockhert B, Brix M R, Kleinschrodt R, et al. 1999. Thermochronometry and microstructures of quartz: A comparison with experimental flow laws and predictions on the temperature of the brittle-plastic transition[J]. Journal of Structural Geology, 21(3): 351369. [本文引用:2]
[46] Stünitz H, Fitz Gerald J. 1993. Deformation of granitoids at low metamorphic grade. Ⅱ: Granular flow in albite-rich mylonites[J]. Tectonophysics, 221(3-4): 299324. [本文引用:3]
[47] Trouw R, Passchier C, Wiersma D. 2010. Atlas of Mylonites- and Related Microstructures[M]. Springer, Berlin. [本文引用:3]
[48] Tullis J, Dell'Angelo L N, Yund R A. 1990. Ductile shear zones from brittle precursors in feldspathic rocks: The possible role of dynamic recrystallization [A]∥Duba A, Durham W, Hand in J, et al. 2013. The Brittle-Ductile Transition in Rocks. American Geophysical Union: Geophysical Monograph Series(56): 6782. [本文引用:1]
[49] Tullis J, Yund R. 1985, Dynamic recrystallization of feldspar: A mechanism for ductile shear zone formation[J]. Geology, 13(4): 238241. [本文引用:1]
[50] Tullis J, Yund R. 1991. Diffusion creep in feldspar aggregates: Experimental evidence[J]. Journal of Structural Geology, 13(9): 9871000. [本文引用:1]
[51] Tullis J, Yund R. 1992. The brittle-ductile transition in feldspar aggregates: An experimental study[J]. International Geophysics, 51: 89117. [本文引用:2]
[52] Tullis J, Yund R A. 1977. Experimental deformation of dry Westerly granite[J]. Journal of Geophysical Research, 82(36): 57055718. [本文引用:1]
[53] Tullis J, Yund R A. 1987. Transition from cataclastic flow to dislocation creep of feldspar: Mechanisms and microstructures[J]. Geology, 15(15): 606609. [本文引用:2]
[54] Tullis J, Yund R, Farver J. 1996. Deformation-enhanced fluid distribution in feldspar aggregates and implications for ductile shear zones[J]. Geology, 24(1): 6366. [本文引用:1]
[55] White J C, Mawer C K. 1986. Extreme ductility of feldspars from a mylonite, Parry Sound, Canada[J]. Journal of Structural Geology, 8(8): 133137. [本文引用:1]
[56] Xiao X, Wirth R, Dresen G. 2002. Diffusion creep of anorthite-quartz aggregates[J]. Journal of Geophysical Research: Solid Earth, 107(B11): 2279. [本文引用:2]
[57] Yund R. 1986. Interdiffusion of NaSi-CaAl in peristerite[J]. Physics and Chemistry of Minerals, 13(1): 1116. [本文引用:1]
[58] Yund R, Quigley J, Tullis J. 1989. The effect of dislocations on bulk diffusion in feldspars during metamorphism[J]. Journal of Metamorphic Geology, 7(3): 337341. [本文引用:1]
[59] Zulauf G. 2001. Structural style, deformation mechanisms and paleodifferential stress along an exposed crustal section: Constraints on the rheology of quartzofeldspathic rocks at supra- and infrastructural levels(Bohemian Massif)[J]. Tectonophysics, 332(1): 211237. [本文引用:1]