川滇地区主要断裂带上的库仑应力变化及其对地震危险性的指示
李玉江1), 石富强2), 张辉3), 魏文薪4), 徐晶5), 邵志刚4)
1)中国地震局地壳应力研究所, 地壳动力学重点实验室, 北京 100085
2)陕西省地震局, 西安 710068
3)中国地震局兰州地震研究所, 兰州 730000
4)中国地震局地震预测研究所, 北京 100036
5)中国地震局第二监测中心, 西安 710054

〔作者简介〕 李玉江, 男, 1982年生, 2016年于中国地质大学(北京)获构造地质学博士学位, 副研究员, 现主要从事构造应力应变场与地球动力学数值模拟研究, 电话: 010-62842659, E-mail: toleeyj@126.com

摘要

文中基于弹性位错理论与黏弹性分层介质模型, 考虑川滇地区及邻区历史强震的同震位错与震后黏弹性松弛效应的影响, 计算给出了1515年永胜 M7.8地震以来川滇地区主要块体边界断裂带与构造块体内部的库仑应力变化。 计算结果显示, 鲜水河断裂带南段、 安宁河断裂带、 小江断裂带北段、 龙门山断裂带南段、 楚雄-建水断裂带与小江断裂带的交会处、 理塘断裂带沙湾段等断裂带上的库仑应力增加显著(≥0.1MPa)。 同时, 块体内部川滇藏交界区的库仑应力增加同样显著。 综合地震空区、 地震活动性参数及文中所给出的应力场变化结果分析认为, 安宁河断裂带、 小江断裂带北段、 鲜水河断裂带南段、 龙门山断裂带南段和川滇藏交界区未来的强震危险性值得密切关注。 文中研究结果可为川滇地区未来的地震危险性分析提供力学参考。

关键词: 库仑应力变化; 黏弹性分层模型; 地震危险性; 川滇地区
中图分类号:P315.2 文献标志码:A 文章编号:0253-4967(2020)02-0526-21
COULOMB STRESS CHANGE ON ACTIVE FAULTS IN SICHUAN-YUNNAN REGION AND ITS IMPLICATIONS FOR SEISMIC HAZARD
LI Yu-jiang1), SHI Fu-qiang2), ZHANG Hui3), WEI Wen-xin4), XU Jing5), SHAO Zhi-gang4)
1)Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China
2)Shaanxi Earthquake Agency, Xi'an 710068, China
3)Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China
4)Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China
5)The Second Crust Monitoring and Application Center, China Earthquake Administration, Xi'an 710054, China
Abstract

Coulomb stress change on active faults is critical for seismic hazard analysis and has been widely used at home and abroad. The Sichuan-Yunnan region is one of the most tectonically and seismically active regions in Mainland China, considering some highly-populated cities and the historical earthquake records in this region, stress evolution and seismic hazard on these active faults capture much attention.
From the physical principal, the occurrence of earthquakes will not only cause stress drop and strain energy release on the seismogenic faults, but also transfer stress to the surrounding faults, hence alter the shear and normal stress on the surrounding faults that may delay, hasten or even trigger subsequent earthquakes. Previously, most studies focus on the coseismic Coulomb stress change according to the elastic dislocation model. However, the gradually plentiful observation data attest to the importance of postseismic viscoelastic relaxation effect during the analysis of seismic interactions, stress evolution along faults and the cumulative effect on the longer time scale of the surrounding fault zone. In this paper, in order to assess the seismic hazard in Sichuan-Yunnan region, based on the elastic dislocation theory and the stratified viscoelastic model, we employ the PSGRN/PSCMP program to calculate the cumulative Coulomb stress change on the main boundary faults and in inner blocks in this region, by combining the influence of coseismic dislocations of the M≥7.0 historical strong earthquakes since the Yongsheng M7.8 earthquake in 1515 in Sichuan-Yunnan region and M≥8.0 events in the neighboring area, and the postseismic viscoelastic relaxation effect of the lower crust and upper mantle.
The results show that the Coulomb stress change increases significantly in the south section of the Xianshuihe Fault, the Anninghe Fault, the northern section of the Xiaojiang Fault, the southern section of the Longmen Shan Fault, the intersection of the Chuxiong-Jianshui Fault and the Xiaojiang Fault, and the Shawan section of the Litang Fault, in which the cumulative Coulomb stress change exceeds 0.1MPa. The assuming different friction coefficient has little effect on the stress change, as for the strike-slip dominated faults, the shear stress change is much larger than the normal stress change, and the shear stress change is the main factor controlling the Coulomb stress change on the fault plane. Meanwhile, we compare the Coulomb stress change in the 10km and 15km depths, and find that for most faults, the results are slightly different. Additionally, based on the existing focal mechanism solutions, we add the focal mechanism solutions of the 5 675 small-medium earthquakes(2.5≤ M≤4.9)in Sichuan-Yunnan region from January 2009 to July 2019, and invert the directions of the three principal stresses and the stress shape factor in 0.1°×0.1° grid points; by combining the grid search method, we compare the inverted stress tensors with that from the actual seismic data, and further obtain the optimal stress tensors. Then, we project the stress tensors on the two inverted nodal planes separately, and select the maximum Coulomb stress change to represent the stress change at the node. The results show that the cumulative Coulomb stress change increase in the triple-junction of Sichuan-Yunnan-Tibet region is also significant, and the stress change exceeds 0.1MPa.
Comprehensive analysis of the Coulomb stress change, seismic gaps and seismicity parameters suggest that more attention should be paid to the Anninghe Fault, the northern section of the Xiaojiang Fault, the south section of the Xianshuihe Fault, the southern section of the Longmen Shan Fault and the triple-junction of the Sichuan-Yunnan-Tibet region. These results provide a basis for future seismic hazard analysis in the Sichuan-Yunnan region.

Keyword: Coulomb stress change; stratified viscoelastic model; seismic hazard; Sichuan-Yunnan region
0 引言

地震的孕育和发生是孕震体应力、 应变能不断积累、 进入临界状态并最终失稳的力学过程(Reid, 1910; Scholz, 1990)。 因此, 要探讨强震的迁移规律并开展地震危险性分析, 最根本的途径是研究断裂带的应力状态及其动态演化过程(王仁等, 1980)。

库仑破裂应力作为表征断层应力状态变化的一种方法, 在强震间相互作用(Stein et al., 1992; King et al., 1994; 万永革等, 2000; Pollitz et al., 2003; 沈正康等, 2003; 陈连旺等, 2008; 韩竹军等, 2008; 单斌等, 2012; Li et al., 2015)、 断裂带应力场演化及地震危险性分析(Harris, 1998; Stein, 1999; Hubert-Ferrari et al., 2000; Toda et al., 2008; Wan et al., 2010; Xiong et al., 2010, 2017; He et al., 2011; 徐晶等, 2013; Shao et al., 2016)中得到了广泛应用。 特别引人关注的是, 在1999年Izmit M7.4地震发生前, Stein等(1997)Nalbant等(1998)通过计算土耳其北安纳托利亚断裂带的库仑应力变化, 提出断裂带NW段的应力明显增加且具有较高的地震危险性, 而1999年Izmit M7.4地震的发生再次印证了这些认识的正确性(Hubert-Ferrari et al., 2000)。 以往的研究多基于弹性位错的模拟, 其结果较好地反映了应力变化的同震响应。 此外, 形变观测资料表明, 来自下地壳、 上地幔的黏性流变松弛效应所引起的震后几年至几十年时间尺度的区域应变率将发生明显变化(Li et al., 1987), 表明黏性流变松弛效应对于控制断层应力演化具有重要作用(Freed et al., 2001)。

川滇地区是中国大陆历史强震的活跃区之一, 前人从同震位错及震后黏弹性松弛效应等方面针对区域内单条断裂的应力场演化过程开展了一系列研究(张秋文等, 2003; 陈连旺等, 2008; 徐晶等, 2013; 尹凤玲等, 2018), 但仍缺乏对活动块体或块体边界断裂系应力场演化的系统研究。 同时, 基于活动地块与强震活动关系的研究认为, 中国大陆几乎所有8级和80%~90%的7级以上地震都发生在块体边界的断裂带上(张培震等, 2003; 张国民等, 2005)。 因此, 开展块体边界主要活动断裂带应力场演化的研究, 对于强震危险性分析具有重要的科学意义。

本文在前人研究的基础上, 收集了1515年永胜M7.8地震以来川滇地区M≥ 7.0地震及邻区M≥ 8.0大地震的震源模型参数, 利用PSGRN/PSCMP黏弹性介质分层模型(Wang et al., 2006)计算地震的同震位错及震后黏弹性松弛效应所引起的断裂带上的库仑应力演化和应力变化, 为潜在强震危险区的判定提供力学参考。

1 川滇地区的地质构造与地震活动性

川滇地区位于青藏高原东南缘, 是印度板块与欧亚板块碰撞的强烈变形地带。 区域内地质构造复杂、 活动断裂发育、 强震活动频繁(Zhang et al., 2004; 张国民等, 2005; Royden et al., 2008)(图1), 发育有鲜水河断裂带、 安宁河断裂带、 小江断裂带、 金沙江断裂带、 红河断裂带和龙门山断裂带等大型块体边界断裂。 这些断裂将川滇地区及邻区划分为川滇块体、 巴颜喀拉块体、 华南块体、 滇西块体和滇南块体等次级活动地块, 并控制着强震的空间展布格局(Wang et al., 1998; 徐锡伟等, 2003; 张培震等, 2003)。 自有地震记录以来, 川滇地区共发生M≥ 6.7强震78次, 其中包括M≥ 7.0强震40余次(地震目录来自中国地震台网中心)。

图 1 川滇地区的地质构造与地震活动性
黑色圆点为M≥ 6.7的历史强震震中; 震源球为1515年以来M≥ 6.7历史强震的震源机制解。 AF 安宁河断裂带; CF 程海断裂带; CJF 楚雄-建水断裂带; DF 大凉山断裂带; DZDF 德钦-中甸-大具断裂带; HF 虎牙断裂带; JF 景洪断裂带; JSJF 金沙江断裂带; LCF 澜沧江断裂带; LF 龙日坝断裂带; LLF 龙陵-澜沧断裂带; LMSF 龙门山断裂带; LTF 理塘断裂带; LXF 丽江-小金河断裂带; MF 马边断裂带; NF 怒江断裂带; NTF 南汀河断裂带; RF 红河断裂带; RLF 瑞丽-龙陵断裂带; WQF 维西-乔后断裂带; XF 鲜水河断裂带; XJF 小江断裂带; YLF 元谋-绿汁江断裂带; ZF 则木河断裂带; ZTF 昭通断裂带
Fig. 1 Geological structure and seismic activity in Sichuan-Yunnan region.

2 计算方法与模型建立
2.1 计算方法

根据库仑破裂假设, 岩石趋近于破裂程度的库仑破裂应力σ f为(King et al., 1994)

σf=τ+μ(σn+p)(1)

其中, τ 为断层面上的剪应力, 以断层滑动方向为正; σ n为正应力, 定义张性为正; p为孔隙流体压力; μ 为断层面的摩擦系数。

在实际研究中, 难以精确获得地下的应力张量。 因此, 地震学家经过一系列假定、 简化(Harris, 1998), 得到常用的库仑应力变化近似表达式(King et al., 1994)

Δσf=Δτ+μ(Δσn+Δp)(2)

式中, Δ τ 为断层面上剪应力的变化, Δ σ n和Δ p分别为断层面上的正应力和孔隙压力的变化。 如果Δ σ f> 0, 则有利于后续地震的发生。

为了简化孔隙压力变化的影响, 引入Skempton系数B', B'依赖于岩石体的膨胀系数和流体所占体积的比例, 取值范围为0~1, Δ p=B'Δ σ kk/3。 假定断层处比周围岩石更具有延展性, 则Δ σ nσ kk/3, 并定义有效摩擦系数μ '=μ (1-B')(Rice, 1992), 其给出了孔隙流体和断层面上的介质属性, 取值范围为0~1, 则库仑破裂应力变化Δ σ f变为

Δσf=Δτ+μ'Δσn(3)

参考前人的做法(King et al., 1994), 本研究中有效摩擦系数μ ' 取0.4。 采用弹性位错模型计算同震库仑应力的变化(Okada, 1985)和能更好地模拟震后短期和长期观测的Burgers体模型来模拟震后黏弹性松弛效应(邵志刚等, 2007; Shao et al., 2016)。

2.2 介质模型

参考川西地区人工测深剖面(王椿镛等, 2003)、 中国大陆及东昆仑断裂带下地壳和地幔岩石圈流变性质的研究成果(沈正康等, 2003; 邵志刚等, 2008; 石耀霖等, 2008), 确定模型的速度结构及下地壳、 上地幔的黏滞系数。 选择Burgers体模型模拟下地壳、 上地幔的黏弹性流变特性(Pollitz et al., 2001; 邵志刚等, 2007), 具体参数见表1。 由于川滇地区的强震多发生在10~15km深处(张国民等, 2002; 王椿镛等, 2003), 本文以10km作为断层面库仑应力演化的计算深度。

表1 黏弹性介质分层模型参数 Table1 Parameters in the stratified viscoelastic relaxation model
2.3 断层模型

川滇地区发育有鲜水河断裂带、 安宁河断裂带、 小江断裂带、 金沙江断裂带、 红河断裂带、 龙门山断裂带等大型块体边界断裂带以及丽江-小金河断裂带、 龙陵-澜沧断裂带、 理塘断裂带等次级块体边界与块体内部断裂(邓起东等, 2002)。 前人利用地震地质、 古地震、 地震学反演等方法开展了大量研究(虢顺民等, 2000; 邓起东等, 2002; 徐锡伟等, 2003, 2005a; 张培震等, 2003, 2008; 韩竹军等, 2004; Wen et al., 2008; 刘鸣等, 2015; Sun et al., 2017; Wang et al., 2017), 获得了较为精细的断裂带几何展布特征, 具体的走向、 倾角、 滑动角见图2。 另外, 由于针对金沙江断裂带几何特征的研究程度较低, 本文计算库仑应力变化时未考虑该断裂带。

图 2 川滇地区主要活动断裂的几何参数Fig. 2 Geometry parameters of main active faults in Sichuan-Yunnan region.

2.4 震源模型

基于已有的地震地质、 历史地震破裂、 震源破裂过程反演等研究结果, 获得了川滇地区M≥ 7.0地震及邻区M≥ 8.0大地震的震源破裂模型, 具体参数见表2

表2 川滇及邻区M≥ 7.0大地震震源破裂模型参数 Table2 Source parameters of the strong earthquakes with M≥ 7.0 in Sichuan-Yunnan region and its adjacent area
3 研究结果

本研究根据历史强震同震位错模型和岩石圈分层介质模型, 利用PSGRN/PSCMP程序(Wang et al., 2006) 计算了46次历史强震的同震位错和震后黏弹性松弛效应引起的应力张量变化, 并将应力张量变化投影到断层节面上, 给出区域内主要断裂带上的库仑应力演化和应力变化。

3.1 川滇地区主要断裂带的库仑应力变化

结合川滇菱形块体北、 东边界及滇西南地区强震活跃期的研究结果(Wen et al., 2008; M7专项工作组, 2012), 分别选取1893年八美M7.0地震、 1833年嵩明M8.0地震、 1941年耿马M7.0地震作为鲜水河断裂带、 安宁河-小江断裂带和滇西南地区断裂带应力演化的起始地震, 在计算其它断裂带应力演化时考虑所有M≥ 7.0历史地震。 计算结果显示(图3), 强震的发生除造成断层破裂面的库仑应力明显减小外, 还引起破裂面两端延伸方向上的应力增加; 综合同震位错和震后黏弹性松弛效应引起的断裂带上的应力变化分析, 截至2020年, ①鲜水河断裂带南段、 ②安宁河断裂带、 ③小江断裂带北段、 ④龙门山断裂带南段、 ⑤楚雄-建水断裂带与小江断裂带交会处以及⑥理塘断裂带沙湾段的累积库仑应力显著增加, 应力变化≥ 0.1MPa; ⑦马边-盐津断裂带、 ⑧程海断裂带南段、 ⑨丽江-小金河断裂带南段、 ⑩红河断裂带北段、 ⑪龙陵-澜沧断裂带以及⑫瑞丽-龙陵断裂带南、 北段等断裂带的累积库仑应力增加比较显著, 应力变化≥ 0.01MPa。

图 3 川滇地区主要断裂带的累积库仑应力变化Fig. 3 Cumulative Coulomb stress change of main faults in Sichuan-Yunnan region.

3.2 川滇地区各块体内部的库仑应力变化

在已有的M≥ 3.0地震的震源机制解基础上(张诚等, 1989), 采用HASH方法(Hardebeck et al., 2002)补充2009年1月— 2019年7月川滇地区5675次2.5≤ M≤ 4.9地震的震源机制解。 利用基于震源机制解反演应力张量的方法(Gephart et al., 1984)得到0.1° × 0.1° 网格点的3个主应力方向和应力形状因子(Angelier, 1979; 万永革, 2015)。 为了获得整个研究区域较平滑的应力场, 以网格点为中心, 选取周围1° × 1° 区域的数据进行反演, 并保证震源机制解的个数> 4, 不超过10。 采用网格搜索法, 对反演获得的应力张量与实际地震数据进行残差分析, 以获取最佳应力张量。 对于震源机制解个数< 4的区域, 由于不能直接用震源机制反演其应力张量, 采用最小二乘配置方法分别进行插值计算(武艳强等, 2009)。 利用获得的应力张量确定最优破裂面和辅助破裂面, 具体结果见图4a。

由于地震潜在破裂节面的不确定性, Toda等(2011)在计算日本岛内的库仑应力变化时, 将最优破裂面和辅助破裂面分别作为接收断层进行应力张量投影, 计算2个节面上的库仑应力变化, 并以库仑应力变化的最大值代表该点的应力变化。 参考其研究方法, 本文将最优破裂面和辅助破裂面分别作为接收面进行应力张量投影, 计算块体内部的库仑应力变化。 从同震位错和震后黏弹性松弛效应引起的应力变化来看, 川滇藏交界区、 巴颜喀拉块体东部、 川滇块体东边界、 川滇块体南边界等区域的累积库仑应力变化比较显著, 变化量≥ 0.01MPa(图4b)。

图 4 川滇地区各块体内部的累积库仑应力变化
a 沙滩球表示最优破裂面和辅助破裂面(0.1° × 0.1° ); b 综合同震位错及震后黏弹性松弛效应共同作用的块体内部应力变化
Fig. 4 Cumulative Coulomb stress change in each block of Sichuan-Yunnan region.

4 讨论

库仑应力变化可为地震危险性分析, 尤其是潜在强震发震地点的判定提供具有力学含义的参考依据(Stein et al., 1997)。 但是, 应力的变化量受到断层摩擦系数、 震源破裂模型等参数选取的影响。

4.1 结果的不确定性分析

以往的研究中, 断层摩擦系数的取值范围为0.2~0.8, 且多数研究经验性地取0.4(King et al., 1994; Wan et al., 2010; 单斌等, 2012)。 Parsons等(1999)认为高角度走滑断层可采用相对较低的摩擦系数(Xiong et al., 2010)。 考虑到断层摩擦系数的选取会影响断层面库仑应力变化的计算结果, 且川滇地区的断层以走滑运动为主, 本文以鲜水河断裂带为例, 进一步分析摩擦系数取0.2、 0.4和0.6时断裂带上的应力变化(图5)。 计算结果显示, 对于以走滑运动为主的断层, 地震的发生所引起的断层面的剪应力变化远大于正应力变化, 断层面的剪应力是决定库仑应力变化的主因, 摩擦系数的选取对计算结果的影响相对较小(图6)。

图 5 不同摩擦系数下鲜水河断裂带的应力变化Fig. 5 Stress change on the Xianshuihe Fault assuming different frictional coefficient.

图 6 左旋走滑型地震引起的应力变化
白色实线表示破裂段, 黑色实线表示相邻断层
Fig. 6 Stress change caused by the left-lateral strike-slip earthquake.

同时, 为分析计算深度的选取对结果的影响, 本文进一步计算15km深度的库仑应力变化(图7)。 通过对比深度为10km和15km的计算结果, 发现对绝大多数断层而言两者差别较小, 但也存在如龙门山断裂带等极少段的计算结果具有较大差异的现象。 分析认为, 这主要与基于反演给出的汶川地震震源破裂模型的同震位移场空间差异性分布有关。

图 7 不同深度下主要断裂带的累积库仑应力变化Fig. 7 Cumulative Coulomb stress change of main faults at different depth in Sichuan-Yunnan region.

4.2 地震危险性分析

背景构造应力场和断层应力变化共同决定断层的地震危险性(石耀霖等, 2010)。 但由于区域构造应力场的大小难以确定, 库仑应力变化成为强震后余震发展趋势判断及断层地震危险性分析的重要依据(Stein et al., 1997; Toda et al., 2005; Syed Tabrez et al., 2008)。 相对于块体边界已有断裂带的应力变化, 块体内部的应力变化可为诸如隐伏断层或新生断层上潜在震源区的判定提供重要参考(Xu et al., 2013; 易桂喜等, 2017)。 库仑应力变化结果表明, 鲜水河断裂带南段、 安宁河断裂带、 小江断裂带北段、 龙门山断裂带南段、 楚雄-建水断裂与小江断裂带交会处、 理塘断裂带沙湾段等断裂带及川滇藏交界区的应力明显增加。 同时, 地震活动性参数研究认为, 安宁河断裂带、 小江断裂带北段、 鲜水河断裂带南段和龙门山断裂带南段存在明显的凹凸体分布(易桂喜等, 2006, 2008; 闻学泽等, 2008)。 另外, 基于地震空区可能是未来大地震发生的危险地段的认识(Sykes, 1971), Wen等(2008)综合强震地表破裂、 震源破裂及余震分布等资料, 提出川滇地区存在安宁河断裂带、 小江断裂带北段、 龙门山断裂带南段和川滇藏交界区等地震空区(闻学泽等, 2009; M7专项工作组, 2012)。 此外, 尽管在龙门山断裂带南段的地震空区发生了2013年M7.0芦山地震, 但仍没有显著降低该断裂带SW段的地震危险性(陈运泰等, 2013)。 综合地震空区、 地震活动性参数及本文所给出的应力场变化结果, 安宁河断裂带、 小江断裂带北段、 鲜水河断裂带南段、 龙门山断裂带南段以及川滇藏交界区未来的强震危险性值得关注。

需要说明的是, 由于针对川滇菱形块体西边界金沙江断裂带几何特征的研究程度较低, 本文未计算该断裂带的库仑应力变化, 因此未讨论该断裂带的地震危险性。

5 结论

本文基于弹性位错理论和黏弹性分层介质模型, 考虑川滇地区及邻区历史强震的同震位错与震后黏弹性松弛效应的影响, 给出了川滇地区主要块体边界断裂带与构造块体内部的库仑应力变化; 并结合地震空区、 地震活动性参数, 开展了区域地震危险性分析, 研究结果表明:

(1)系列强震发生后, 鲜水河断裂带南段、 安宁河断裂带、 小江断裂带北段、 龙门山断裂带南段、 楚雄-建水断裂带与小江断裂带的交会处、 理塘断裂带沙湾段、 川滇藏交界区等表现出明显的应力增加, 变化量≥ 0.1MPa。

(2)综合应力场变化、 地震空区及地震活动性参数, 安宁河断裂带、 小江断裂带北段、 鲜水河断裂带南段、 龙门山断裂带南段及川滇藏交界区未来的强震危险性值得密切关注。

致谢 本文成文过程中得到了熊熊教授及何建坤、 陈连旺、 易桂喜、 崔效锋研究员等专家给予的指导和建议; 审稿专家对本文提出了宝贵的修改意见; 所有图件使用GMT绘制(Wessel et al., 2013), 在此一并表示感谢!

参考文献
[1] 陈连旺, 张培震, 陆远忠, . 2008. 川滇地区强震序列库仑破裂应力加卸载效应的数值模拟[J]. 地球物理学报, 51(5): 14111421.
CHEN Lian-wang, ZHANG Pei-zhen, LU Yuan-zhong, et al. 2008. Numerical simulation of loading/unloading effect on Coulomb failure stress among strong earthquakes in Sichuan-Yunnan area[J]. Chinese Journal of Geophysics, 51(5): 14111421(in Chinese). [本文引用:2]
[2] 陈运泰, 杨智娴, 张勇, . 2013. 从汶川地震到芦山地震[J]. 中国科学(D辑), 43(6): 10641072.
CHEN Yun-tai, YANG Zhi-xian, ZHANG Yong, et al. 2013. From 2008 Wenchuan earthquake to 2013 Lushan earthquake[J]. Science in China(Ser D), 43(6): 10641072(in Chinese). [本文引用:1]
[3] 程佳, 刘杰, 徐锡伟, . 2014. 大凉山次级块体内强震发生的构造特征与2014年鲁甸6. 5级地震对周边断层的影响[J]. 地震地质, 36(4): 12281243. DOI: 103969/j. issn. 0253-4967. 2014. 04. 023.
CHENG Jia, LIU Jie, XU Xi-wei, et al. 2014. Tectonic characteristics of strong earthquakes in Daliangshan sub-block and impact of the MS6. 5 Ludian earthquake in 2014 on the surrounding faults[J]. Seismology and Geology, 36(4): 12281243(in Chinese). [本文引用:1]
[4] 程佳, 姚生海, 刘杰, . 2018. 2017年九寨沟地震所受历史地震黏弹性库仑应力作用及其后续对周边断层地震危险性的影响[J]. 地球物理学报, 61(5): 21332151.
CHENG Jia, YAO Sheng-hai, LIU Jie, et al. 2018. Visoelastic Coulomb stress of historical earthquakes on the 2017 Jiuzhaigou earthquake and the subsequent influence on the seismic hazards of adjacent faults[J]. Chinese Journal of Geophysics, 61(5): 21332151(in Chinese). [本文引用:1]
[5] 邓起东, 张培震, 冉勇康, . 2002. 中国活动构造基本特征[J]. 中国科学(D辑), 32(12): 10201030, 1057.
DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. 2003. Basic characteristics of active tectonics of China[J]. Science in China(Ser D), 46(4): 356372. [本文引用:2]
[6] 虢顺民, 向宏发, 徐锡伟, . 2000. 滇西南龙陵-澜沧第四纪新生断裂带特征和形成机制研究[J]. 地震地质, 22(3): 277284.
GUO Shun-min, XIANG Hong-fa, XU Xi-wei, et al. 2000. Characteristics and formation mechanism of the Longling-Lancang newly emerging fault zone in Quaternary in the southwest Yunnan[J]. Seismology and Geology, 22(3): 277284(in Chinese). [本文引用:1]
[7] 韩竹军, 董绍鹏, 谢富仁, . 2008. 南北地震带北部5次(1561—1920年)M≥7地震触发关系研究[J]. 地球物理学报, 51(6): 17761784.
HAN Zhu-jun, DONG Shao-peng, XIE Fu-ren, et al. 2008. Earthquake triggering by static stress: The 5 major earthquakes with M≥7(1561—1920)in the northern section of South-north seismic zone, China[J]. Chinese Journal of Geophysics, 51(6): 17761784(in Chinese). [本文引用:1]
[8] 韩竹军, 虢顺民, 向宏发, . 2004. 1996年2月3日云南丽江7. 0级地震发生的构造环境[J]. 地震学报, 26(4): 410418.
HAN Zhu-jun, GUO Shun-min, XIANG Hong-fa, et al. 2004. Seismotectonic environment of occurring the February 3, 1996 Lijiang M=7. 0 earthquake, Yunnan Province[J]. Acta Seismologica Sinica, 17(4): 453463. [本文引用:1]
[9] 侯康明, 雷中生, 万夫岭, . 2005. 1879年武都南8级大地震及其同震破裂研究[J]. 中国地震, 21(3): 295310.
HOU Kang-ming, LEI Zhong-sheng, WAN Fu-ling, et al. 2005. Research on the 1879 southern Wudu M8. 0 earthquake and its coseismic ruptures[J]. Earthquake Research in China, 21(3): 295310(in Chinese). [本文引用:1]
[10] 刘鸣, 付碧宏, 董彦芳. 2015. 青藏高原东南缘滇缅地块NE向走滑断裂带的新构造活动与大地震危险性[J]. 地球物理学报, 58(11): 41744186.
LIU Ming, FU Bi-hong, DONG Yan-fang. 2015. Neotectonics of NE-striking fault zones and earthquake risk in the Yunnan-Myanmar block, southeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics, 58(11): 41744186(in Chinese). [本文引用:1]
[11] M7专项工作组. 2012. 中国大陆大地震中—长期危险性研究 [M]. 北京: 地震出版社: 1336.
Working Group on the Stong Earthquakes of M≥7. 2012: [M]. Seismological Press, Beijing: 1336(in Chinese). [本文引用:2]
[12] 单斌, 熊熊, 金笔凯, . 2012. 松潘-甘孜块体东北端强震间相互作用及地震危险性研究[J]. 地球物理学报, 55(7): 23292340.
SHAN Bin, XIONG Xiong, JIN Bi-kai, et al. 2012. Earthquake stress interaction in the northeastern Songpan-Garze block and its implication for earthquake hazard[J]. Chinese Journal of Geophysics, 55(7): 23292340(in Chinese). [本文引用:2]
[13] 邵志刚, 傅容珊, 薛霆虓, . 2007. 以Burgers体模型模拟震后黏弹性松弛效应[J]. 大地测量与地球动力学, 27(5): 3137.
SHAO Zhi-gang, FU Rong-shan, XUE Ting-xiao, et al. 2007. Simulating postseismic viscoelastic deformation based on Burgers model[J]. Journal of Geodesy and Geodynamics, 27(5): 3137(in Chinese). [本文引用:2]
[14] 邵志刚, 傅容珊, 薛霆虓, . 2008. 昆仑山MS8. 1地震震后变形场数值模拟与成因机理探讨[J]. 地球物理学报, 51(3): 805816.
SHAO Zhi-gang, FU Rong-shan, XUE Ting-xiao, et al. 2008. Numerical simulation and discussion on the mechanism of postseismic deformation after Kunlun MS8. 1 earthquake[J]. Chinese Journal of Geophysics, 51(3): 805816(in Chinese). [本文引用:1]
[15] 沈正康, 万永革, 甘卫军, . 2003. 东昆仑活动断裂带大地震之间的黏弹性应力触发研究[J]. 地球物理学报, 46(6): 786795.
SHEN Zheng-kang, WAN Yong-ge, GAN Wei-jun, et al. 2003. Viscoelastic triggering between large earthquakes along the East Kunlun fault system[J]. Chinese Journal of Geophysics, 46(6): 11251138. [本文引用:2]
[16] 石耀霖, 曹建玲. 2008. 中国大陆岩石圈等效黏滞系数的计算和讨论[J]. 地学前缘, 15(3): 8295.
SHI Yao-lin, CAO Jian-ling. 2008. Effective viscosity of China continental lithosphere[J]. Earth Science Frontiers, 15(3): 8295(in Chinese). [本文引用:1]
[17] 石耀霖, 曹建玲. 2010. 库仑应力计算及应用过程中若干问题的讨论: 以汶川地震为例[J]. 地球物理学报, 53(1): 102110.
SHI Yao-lin, CAO Jian-ling. 2010. Some aspects of static stress change calculation: Case study on the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 53(1): 102110(in Chinese). [本文引用:1]
[18] 万永革. 2015. 联合采用定性和定量断层资料的应力张量反演方法及在乌鲁木齐地区的应用[J]. 地球物理学报, 58(9): 31443156.
WAN Yong-ge. 2015. A grid search method for determination of tectonic stress tensors using qualitative and quantitative data of active faults and its implication to the Urumqi area[J]. Chinese Journal of Geophysics, 58(9): 31443156(in Chinese). [本文引用:1]
[19] 万永革, 沈正康, 曾跃华, . 2007. 青藏高原东北部的库仑应力积累演化对大地震发生的影响[J]. 地震学报, 29(2): 115129.
WAN Yong-ge, SHEN Zheng-kang, ZENG Yue-hua, et al. 2007. Evolution of cumulative Coulomb failure stress in northeastern Qinghai-Xizang(Tibetan)Plateau and its effect on large earthquake occurrence[J]. Acta Seismologica Sinica, 20(2): 117132. [本文引用:1]
[20] 万永革, 吴忠良, 周公威, . 2000. 几次复杂地震中不同破裂事件之间的 “应力触发”问题[J]. 地震学报, 22(6): 568576.
WAN Yong-ge, WU Zhong-liang, ZHOU Gong-wei, et al. 2000. “Stress triggering” between different rupture events in several earthquakes[J]. Acta Seismologica Sinica, 13(6): 607615. [本文引用:1]
[21] 王椿镛, 吴建平, 楼海, . 2003. 川西藏东地区的地壳P波速度结构[J]. 中国科学(D辑), 33(S1): 181189.
WANG Chun-yong, WU Jian-ping, LOU Hai, et al. 2003. P-wave crustal velocity structure in western Sichuan and eastern Tibetan region[J]. Science in China(Ser D), 46(2): 254265. [本文引用:2]
[22] 王仁, 何国琦, 殷有泉, . 1980. 华北地区地震迁移规律的数学模拟[J]. 地震学报, 2(1): 3242.
WANG Ren, HE Guo-qi, YIN You-quan, et al. 1980. A mathematical simulation for the pattern of seismic transference in North China[J]. Acta Seismologica Sinica, 2(1): 3242(in Chinese). [本文引用:1]
[23] 文雯, 罗荣联. 2010. 1917年7月31日云南大关吉利铺地震震级估定的讨论[J]. 西北地震学报, 32(3): 253257.
WEN Wen, LUO Rong-lian. 2010. Discussion on the magnitude assessment to Daguan Jilipu earthquake on July 31, 1917 in Yunnan Province[J]. Northwestern Seismological Journal, 32(3): 253257(in Chinese). [本文引用:1]
[24] 闻学泽, 杜方, 龙锋, . 2011. 小江和曲江-石屏两断裂系统的构造动力学与强震序列的关联性[J]. 中国科学(D辑), 41(5): 713724.
WEN Xue-ze, DU Fang, LONG Feng, et al. 2011. Tectonic dynamics and correlation of major earthquake sequences of the Xiaojiang and Qujiang-Shiping fault systems, Yunnan, China[J]. Science in China(Ser D), 54(10): 15631575. [本文引用:1]
[25] 闻学泽, 范军, 易桂喜, . 2008. 川西安宁河断裂上的地震空区[J]. 中国科学(D辑), 38(7): 797807.
WEN Xue-ze, FAN Jun, YI Gui-xi, et al. 2008. A seismic gap on the Anninghe Fault in western Sichuan, China[J]. Science in China(Ser D), 51(10): 13751387. [本文引用:1]
[26] 闻学泽, 徐锡伟, 郑荣章, . 2003. 甘孜-玉树断裂的平均滑动速率与近代大地震破裂[J]. 中国科学(D辑), 33(S1): 199208.
WEN Xue-ze, XU Xi-wei, ZHENG Rong-zhang, et al. 2003. Average slip-rate and recent large earthquake ruptures along the Ganzê-Yushu Fault[J]. Science in China(Ser D), 46(2): 276288. [本文引用:1]
[27] 闻学泽, 张培震, 杜方, . 2009. 2008年汶川8. 0级地震发生的历史与现今地震活动背景[J]. 地球物理学报, 52(2): 444454.
WEN Xue-ze, ZHANG Pei-zhen, DU Fang, et al. 2009. The background of historical and modern seismic activities of the occurrence of the 2008 MS8. 0 Wenchuan, Sichuan, earthquake[J]. Chinese Journal of Geophysics, 52(2): 444454(in Chinese). [本文引用:1]
[28] 吴小平, 付虹, Michel B, . 2007a. 完全库仑破裂应力变化与云南龙陵震群序列的应力触发[J]. 地球物理学报, 50(4): 11111122.
WU Xiao-ping, FU Hong, Michel B, et al. 2007a. Complete Coulomb failure stress changes and stress triggering of Yunnan Longling earthquake sequence[J]. Chinese Journal of Geophysics, 50(4): 11111122(in Chinese). [本文引用:1]
[29] 吴小平, 虎雄林, Michel B, . 2007b. 云南澜沧-耿马MS7. 6地震的完全库仑破裂应力变化与后续地震的动态、 静态应力触发[J]. 中国科学(D辑), 37(6): 746752.
WU Xiao-ping, HU Xiong-lin, Michel B, et al. 2007b. Complete Coulomb stress changes induced by the MS7. 6 earthquake in Lancang-Gengma, Yunnan and triggering of aftershocks by dynamic and static stress[J]. Science in China(Ser D), 50(11): 16551662. [本文引用:1]
[30] 武艳强, 江在森, 杨国华, . 2009. 利用最小二乘配置在球面上整体解算GPS应变场的方法及应用[J]. 地球物理学报, 52(7): 17071714.
WU Yan-qiang, JIANG Zai-sen, YANG Guo-hua, et al. 2009. The application and method of GPS strain calculation in whole mode using least square collocation in sphere surface[J]. Chinese Journal of Geophysics, 52(7): 17071714(in Chinese). [本文引用:1]
[31] 徐晶, 邵志刚, 马宏生, . 2013. 鲜水河断裂带库仑应力演化与强震间关系[J]. 地球物理学报, 56(4): 11461158.
XU Jing, SHAO Zhi-gang, MA Hong-sheng, et al. 2013. Evolution of Coulomb stress and stress interaction among strong earthquakes along the Xianshuihe fault zone[J]. Chinese Journal of Geophysics, 56(4): 11461158(in Chinese). [本文引用:2]
[32] 徐锡伟, 闻学泽, 于贵华, . 2005a. 川西理塘断裂带平均滑动速率、 地震破裂分段与复发特征[J]. 中国科学(D辑), 35(6): 540551.
XU Xi-wei, WEN Xue-ze, YU Gui-hua, et al. 2005a. Average slip rate, earthquake rupturing segmentation and recurrence behavior on the Litang fault zone, western Sichuan Province, China[J]. Science in China(Ser D), 48(8): 11831196. [本文引用:1]
[33] 徐锡伟, 闻学泽, 郑荣章, . 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 33(S1): 151162.
XU Xi-wei, WEN Xue-ze, ZHENG Rong-zhang, et al. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China[J]. Science in China(Ser D), 46(2): 210226. [本文引用:2]
[34] 徐锡伟, 张培震, 闻学泽, . 2005b. 川西及其邻近地区活动构造基本特征与强震复发模型[J]. 地震地质, 27(3): 446461.
XU Xi-wei, ZHANG Pei-zhen, WEN Xue-ze, et al. 2005b. Features of active tectonics and recurrence behaviors of strong earthquakes in the western Sichuan Province and its adjacent regions[J]. Seismology and Geology, 27(3): 446461(in Chinese). [本文引用:1]
[35] 易桂喜, 龙锋, 梁明剑, . 2017. 2017年8月8日九寨沟M7. 0地震及余震震源机制解与发震构造分析[J]. 地球物理学报, 60(10): 40834097.
YI Gui-xi, LONG Feng, LIANG Ming-jian, et al. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7. 0 Jiuzhaigou earthquake and its aftershocks, northern Sichuan[J]. Chinese Journal of Geophysics, 60(10): 40834097(in Chinese). [本文引用:1]
[36] 易桂喜, 闻学泽, 苏有锦. 2008. 川滇活动地块东边界强震危险性研究[J]. 地球物理学报, 51(6): 17191725.
YI Gui-xi, WEN Xue-ze, SU You-jin. 2008. Study on the potential strong-earthquake risk for the eastern boundary of the Sichuan-Yunnan active faulted-block, China[J]. Chinese Journal of Geophysics, 51(6): 17191725(in Chinese). [本文引用:1]
[37] 易桂喜, 闻学泽, 王思维, . 2006. 由地震活动参数分析龙门山-岷山断裂带的现今活动习性与强震危险性[J]. 中国地震, 22(2): 117125.
YI Gui-xi, WEN Xue-ze, WANG Si-wei, et al. 2006. Study on fault sliding behaviors and strong-earthquake risk of the Longmenshan-Minshan fault zones from current seismicity parameters[J]. Earthquake Research in China, 22(2): 117125(in Chinese). [本文引用:1]
[38] 尹凤玲, 蒋长胜, 韩立波, . 2018. 红河断裂带库仑应力演化及未来地震危险性估计[J]. 地球物理学报, 61(1): 183198.
YIN Feng-ling, JIANG Chang-sheng, HAN Li-bo, et al. 2018. Seismic hazard assessment for the Red River Fault: Insights from Coulomb stress evolution[J]. Chinese Journal of Geophysics, 61(1): 183198(in Chinese). [本文引用:1]
[39] 张诚, 曹新玲, 曲克信. 1989. 中国地震震源机制 [M]. 北京: 学术书刊出版社.
ZHANG Cheng, CAO Xin-ling, QU Ke-xin. 1989. Earthquake Focal Mechanism in China [M]. Academic Books Press, Beijing(in Chinese). [本文引用:1]
[40] 张国民, 李丽, 马宏生, . 2002. 中国大陆地震震源深度及其构造含义[J]. 科学通报, 47(9): 663—668, 721722.
ZHANG Guo-min, LI Li, MA Hong-sheng, et al. 2002. Focal depth and its tectonic implications of the continental earthquakes in China[J]. Chinese Science Bulletin, 47(9): 663—668, 721722(in Chinese). [本文引用:1]
[41] 张国民, 马宏生, 王辉, . 2005. 中国大陆活动地块边界带与强震活动[J]. 地球物理学报, 48(3): 602610.
ZHANG Guo-min, MA Hong-sheng, WANG Hui, et al. 2005. Boundaries between active tectonic blocks and strong earthquakes in China mainland [J]. Chinese Journal of Geophysics, 48(3): 602610(in Chinese). [本文引用:2]
[42] 张培震, 邓起东, 张国民, . 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 1220.
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China(Ser D), 46(2): 1324. [本文引用:3]
[43] 张培震, 徐锡伟, 闻学泽, . 2008. 2008年汶川8. 0级地震发震断裂的滑动速率、 复发周期和构造成因[J]. 地球物理学报, 51(4): 10661073.
ZHANG Pei-zhen, XU Xi-wei, WEN Xue-ze, et al. 2008. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China[J]. Chinese Journal of Geophysics, 51(4): 10661073(in Chinese). [本文引用:1]
[44] 张秋文, 张培震, 王乘, . 2003. 鲜水河断裂带断层间相互作用的触震与缓震效应[J]. 地震学报, 25(2): 143153, 228.
ZHANG Qiu-wen, ZHANG Pei-zhen, WANG Cheng, et al. 2003. Earthquake triggering and delaying caused by fault interaction on Xianshuihe fault belt, southwestern China[J]. Acta Seismologica Sinica, 16(2): 156165. [本文引用:1]
[45] 张世民, 聂高众, 刘旭东, . 2005. 荥经-马边-盐津逆冲构造带断裂运动组合及地震分段特征[J]. 地震地质, 27(2): 221233.
ZHANG Shi-min, NIE Gao-zhong, LIU Xu-dong, et al. 2005. Kinematical and structural patterns of Yingjing-Mabian-Yanjin thrust fault zone, southeast of Tibetan plateau and its segmentation from earthquakes[J]. Seismology and Geology, 27(2): 221233(in Chinese). [本文引用:1]
[46] 张旭, 冯万鹏, 许力生, . 2017. 2017年九寨沟MS7. 0地震震源过程反演与烈度估计[J]. 地球物理学报, 60(10): 41054116.
ZHANG Xu, FENG Wan-peng, XU Li-sheng, et al. 2017. The source-process inversion and the intensity estimation of the 2017 MS7. 0 Jiuzhaigou earthquake[J]. Chinese Journal of Geophysics, 60(10): 41054116(in Chinese). [本文引用:1]
[47] 张勇, 许力生, 陈运泰. 2010. 2010年青海玉树地震震源过程[J]. 中国科学(D辑), 40(7): 819821.
ZHANG Yong, XU Li-sheng, CHEN Yun-tai. 2010. Source process of the 2010 Yushu, Qinghai, earthquake[J]. Science in China(Ser D), 53(9): 12491251. [本文引用:1]
[48] 张勇, 许力生, 陈运泰. 2013. 芦山4·20地震破裂过程及其致灾特征初步分析[J]. 地球物理学报, 56(4): 14081411.
ZHANG Yong, XU Li-sheng, CHEN Yun-tai. 2013. Rupture process of the Lushan 4·20 earthquake and preliminary analysis on the disaster-causing mechanism[J]. Chinese Journal of Geophysics, 56(4): 14081411(in Chinese). [本文引用:1]
[49] Ammon C J, Ji C, Thio H K, et al. 2005. Rupture process of the 2004 Sumatra-Andaman earthquake[J]. Science, 308(5725): 11331139. [本文引用:1]
[50] Angelier J. 1979. Determination of the mean principal directions of stresses for a given fault population[J]. Tectonophysics, 56(3-4): 1726. [本文引用:1]
[51] Ben-Menahem A, Aboodi E, Schild R. 1974. The source of the great Assam earthquake: An interplate wedge motion[J]. Physics of the Earth and Planetary Interiors, 9(4): 265289. [本文引用:1]
[52] Chen W P, Molnar P. 1977. Seismic moments of major earthquakes and the average rate of slip in central Asia[J]. Journal of Geophysical Research, 82(20): 29452969. [本文引用:1]
[53] Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer[J]. Nature, 411(6834): 180183. [本文引用:1]
[54] Gephart J W, Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernand o earthquake sequence[J]. Journal of Geophysical Research: Solid Earth, 89(B11): 93059320. [本文引用:1]
[55] Gkarlaouni C, Papadimitriou E, Karakostas V, et al. 2008. Implication of fault interaction to seismic hazard assessment in Sichuan-Yunnan Provinces of southeastern China[J]. Acta Seismologica Sinica, 21(2): 181201. [本文引用:1]
[56] Hardebeck J L, Shearer P M. 2002. A new method for determining first-motion focal mechanisms[J]. Bulletin of the Seismological Society of America, 92(6): 22642276. [本文引用:1]
[57] Harris R A. 1998. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 2434724358. [本文引用:2]
[58] He J, Xia W, Lu S, et al. 2011. Three-dimensional finite element modeling of stress evolution around the Xiaojiang fault system in the southeastern Tibetan plateau during the past~500 years[J]. Tectonophysics, 507(1): 7085. [本文引用:1]
[59] Hubert-Ferrari A, Barka A, Jacques E, et al. 2000. Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit earthquake[J]. Nature, 404(6775): 269273. [本文引用:2]
[60] Ji C, Hayes G. 2008. Preliminary result of the May 12, 2008 MW7. 9 eastern Sichuan, China earthquake [EB/OL]. http: ∥earthquake. usgs. gov/eqcenter/eqinthenews/2008/us2008ryan/finite_fault. php(last accessed December 2018). [本文引用:1]
[61] King G C, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935953. [本文引用:5]
[62] Leonard M. 2010. Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release[J]. Bulletin of the Seismological Society of America, 100(5A): 19711988. [本文引用:1]
[63] Li V C, Rice J R. 1987. Crustal deformation in Great California earthquake cycles[J]. Journal of Geophysical Research: Solid Earth, 92(B11): 1153311551. [本文引用:1]
[64] Li Y J, Chen L W, Liu S F, et al. 2015. Coseismic Coulomb stress changes caused by the MW6. 9 Yutian earthquake in 2014 and its correlation to the 2008 MW7. 2 Yutian earthquake[J]. Journal of Asian Earth Sciences, 105: 468475. [本文引用:1]
[65] Molnar P, Deng Q D. 1984. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 62036227. [本文引用:1]
[66] Nalbant S S, Hubert A, King G C. 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 2446924486. [本文引用:1]
[67] Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 11351154. [本文引用:1]
[68] Papadimitriou E, Wen X, Karakostas V, et al. 2004. Earthquake triggering along the Xianshuihe fault zone of western Sichuan, China[J]. Pure and Applied Geophysics, 161(8): 16831707. [本文引用:1]
[69] Parsons T, Stein R S, Simpson R W, et al. 1999. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 104(B9): 2018320202. [本文引用:1]
[70] Pollitz F F, Wicks C, Thatcher W. 2001. Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake[J]. Science, 293(5536): 18141818. [本文引用:1]
[71] Pollitz F, Vergnolle M, Calais E. 2003. Fault interaction and stress triggering of twentieth century earthquakes in Mongolia[J]. Journal of Geophysical Research: Solid Earth, 108(B10): 2503. [本文引用:1]
[72] Reid H F. 1910. The mechanics of the earthquake, the California earthquake of April 18, 1906 [R]. Report of the State Earthquake Investigation Commission. Carnegie Institution of Washington, Washington DC. [本文引用:1]
[73] Ren J, Xu X, Zhang S, et al. 2017. Surface rupture of the 1933 M7. 5 Diexi earthquake in eastern Tibet: Implications for seismogenic tectonics[J]. Geophysical Journal International, 212(3): 16271644. [本文引用:1]
[74] Rice J R. 1992. Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault[J]. International Geophysics, 51: 475503. [本文引用:1]
[75] Royden L H, Burchfiel B C, Van der Hilst R D. 2008. The geological evolution of the Tibetan plateau[J]. Science, 321(5892): 10541058. [本文引用:1]
[76] Scholz C H. 1990. The Mechanics of Earthquakes and Faulting [M]. Cambridge University Press, Cambridge, UK. [本文引用:1]
[77] Shan B, Xiong X, Wang R, et al. 2015. Stress evolution and seismic hazard on the Maqin-Maqu segment of East Kunlun fault zone from co-, post- and interseismic stress changes[J]. Geophysical Journal International, 200(1): 244253. [本文引用:1]
[78] Shao Z, Xu J, Ma H, et al. 2016. Coulomb stress evolution over the past 200 years and seismic hazard along the Xianshuihe fault zone of Sichuan, China[J]. Tectonophysics, 670: 4865. [本文引用:2]
[79] Stein R S. 1999. The role of stress transfer in earthquake occurrence[J]. Nature, 402(6762): 605609. [本文引用:1]
[80] Stein R S, Barka A A, Dieterich J H. 1997. Progressive failure on the North Anatolian Fault since 1939 by earthquake stress triggering[J]. Geophysical Journal International, 128(3): 594604. [本文引用:3]
[81] Stein R S, King G C, Lin J. 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude=7. 4 Land ers earthquake[J]. Science, 258(5086): 13281332. [本文引用:1]
[82] Sun H, He H, Wei Z, et al. 2017. Late Quaternary paleoearthquakes along the northern segment of the Nantinghe Fault on the southeastern margin of the Tibetan plateau[J]. Journal of Asian Earth Sciences, 138: 258271. [本文引用:1]
[83] Syed T A, Freed A M, Calais E, et al. 2008. Coulomb stress evolution in northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation[J]. Geophysical Journal International, 174(3): 904918. [本文引用:1]
[84] Sykes L R. 1971. Aftershock zones of great earthquakes, seismicity gaps, and earthquake prediction for Alaska and the Aleutians[J]. Journal of Geophysical Research, 76(32): 80218041. [本文引用:1]
[85] Toda S, Enescu B. 2011. Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast[J]. Earth, Planets and Space, 63(3): 171185. [本文引用:1]
[86] Toda S, Lin J, Meghraoui M, et al. 2008. 12 May 2008 M=7. 9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems[J]. Geophysical Research Letters, 35(17): L17305. [本文引用:1]
[87] Toda S, Stein R S, Richards-Dinger K, et al. 2005. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer[J]. Journal of Geophysical Research: Solid Earth, 110(B5): B05S16. [本文引用:1]
[88] Wan Y, Shen Z K. 2010. Static Coulomb stress changes on faults caused by the 2008 MW7. 9 Wenchuan, China earthquake[J]. Tectonophysics, 491(1): 105118. [本文引用:2]
[89] Wang E, Burchfiel B C, Royden L H, et al. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China[M]. Boulder, Colorado, Geological Society of America Special Paper, 327: 1108. [本文引用:1]
[90] Wang H, RanY, Chen L, et al. 2017. Paleoearthquakes on the Anninghe and Zemuhe Fault along the southeastern margin of the Tibetan plateau and implications for fault rupture behavior at fault bends on strike-slip faults[J]. Tectonophysics, 721: 167178. [本文引用:1]
[91] Wang R, Lorenzo-Martín F, Roth F. 2006. PSGRN/PSCMP: A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers and Geosciences, 32(4): 527541. [本文引用:2]
[92] Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 9741002. [本文引用:1]
[93] Wen X Z, Ma S L, Xu X W, et al. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J]. Physics of the Earth and Planetary Interiors, 168(1): 1636. [本文引用:3]
[94] Wessel P, Smith W H, Scharroo R, et al. 2013. Generic mapping tools: Improved version released[J]. Eos, Transactions American Geophysical Union, 94(45): 409410. [本文引用:1]
[95] Xiong X, Shan B, Zheng Y, et al. 2010. Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet[J]. Tectonophysics, 482(1): 216225. [本文引用:2]
[96] Xiong X, Shan B, Zhou Y M, et al. 2017. Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar over the past 110 years and its implications for seismic hazard[J]. Geophysical Research Letters, 44(10): 47814789. [本文引用:1]
[97] Xu X W, Wen X Z, Han Z J, et al. 2013. Lushan MS7. 0 earthquake: A blind reserve-fault event[J]. Chinese Science Bulletin, 58(28-29): 34373443. [本文引用:1]
[98] Yang Z, Waldhauser F, Chen Y, et al. 2005. Double-difference relocation of earthquakes in central-western China, 1992—1999[J]. Journal of Seismology, 9(2): 241264. [本文引用:1]
[99] Zhang P Z, Shen Z, Wang M, et al. 2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9): 809812. [本文引用:1]