Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
LATEST PROGRESS ON ACTIVITY OF HESHAN-MODAOMEN SEGMENT, XIJIANG FAULT
LU Bang-hua, WANG Ping, WANG Hui-ying, LAI Zhong-ping, DENG Zhi-hui, BI Li-si, WAN Wan-he
SEISMOLOGY AND GEOLOGY    2020, 42 (6): 1370-1384.   DOI: 10.3969/j.issn.0253-4967.2020.06.007
Abstract758)   HTML    PDF(pc) (11462KB)(131)       Save
The Xijiang Fault is an important NW-trending fault with a length of~200km, located in the western part of the Pearl River Delta. A M4 3/4 earthquake occurred at the northern end of the fault(Sihui)in 1445 and a magnitude 5 earthquake occurred at the southern end of the fault(Modaomen Waters)in 1905. Heshan is the boundary between the southern and the northern segments of this fault. The southern segment which is called Heshan-Modaomen segment is mainly hidden faults. The activity of Heshan-Modaomen segment remains controversial due to the lack of systematic studies for the deep and shallow exploration, which affects the assessment and prevention of earthquake disaster risk. In this paper, we concentrate particularly on the distribution and activity of Heshan-Modaomen segment using seismic geological surveys, shallow seismic exploration, joint borehole profile detection, and Quaternary geochronology.
Field geological surveys show that the fault zone is prominently normal sinistral strike-slip faults, striking about N310°~330°W, with a width of 10~20m. Most of them dip northeast at angles of 60°~80°. Observations on typical outcrop show that cataclasite, breccias and siliceous rocks are developed on the faults. Fault planes often have smooth and polished surfaces and no fault geomorphology has been developed along the fault zone. The overlying eluvial weathered soil materials have not been disturbed or cut. We carried out shallow cross-fault sounding of 7 profiles in the hidden section of the fault zone using longitudinal wave reflection method of multifold coverage observation system. As a result, we obtained the reflection time sections of the target stratum and the main structure. A total of 13 breaking points to be investigated were explained. We also performed cross-fault drilling at the location of the seismic data interpretation profile and catalogued drilling cores. 14C and OSL samples were collected systematically. The 14C dating was performed by the BETA Laboratory in the United States and 16 valid age data were obtained. OSL dating was performed by the OSL Laboratory of China University of Geosciences(Wuhan)and 6 age data were obtained.
This paper presents the study results of two representative cross-fault profiles. The shallow exploration survey line XJ1 and the row drill profile P1 are located in the southern section of the fault where six boreholes are arranged. We find the existence of bedrock faults on the joint borehole profile. The grooves developed thereupon are filled with the late Pleistocene paleochannel deposits with no obvious faults observed. The overlying Holocene strata are horizontal and continuous, without cutting and disturbance. Combined with the stratigraphic age, we infer that the fault has been inactive for at least about 11 000 years. The shallow exploration survey line XJ2 and row drill profile P3 are located in the northern section of the fault, where a total of seven boreholes are arranged. The borehole sections reveal the existence of fault crushed zone in the underlying bedrock(Cambrian hornstone). The tectonites are mainly fault breccias and cataclastic rocks with chlorite alteration. Groove landforms are formed along the fault zone with strong erosion at the later stage, and filling and accumulation occurred since the Holocene transgression with no fracture cutting or stratum disturbance. According to the landform, the occurrence of faults and the development of transverse active faults, the Heshan-Modaomen segment of Xijiang Fault can be further divided into two segments with the boundary of Zhupai Island. Both of them have been inactive since the Holocene.
Reference | Related Articles | Metrics
DISCUSSION ON THE SEISMOGENIC STRUCTURE OF ZHAN-JIANG BAY AREA FROM THE VIEW OF DEEP FAULT SYSTEM INTERPRETED BASED ON THE GRAVITY DATA
BI Li-si, REN Zhen-huan, YE Xiu-wei, WU Ye-biao, LIU Tian-you, QIAO Ji-hua
SEISMOLOGY AND GEOLOGY    2018, 40 (6): 1332-1348.   DOI: 10.3969/j.issn.0253-4967.2018.06.010
Abstract600)   HTML    PDF(pc) (8795KB)(198)       Save
The neotectonics in Zhanjiang Bay area is almost the inferred faults and there are not any active faults seen on the ground surface. So it is difficult for research on the seismogenic structure. This paper analyzes and interpretes the gravity data that can reflect the feature of deep faults and then discusses the seismogenic structure of Zhanjiang Bay area in combination with its geology and earthquake activity. There is a huge NEE-trending high gravity gradient belt lying in the coastal region among Guangdong, Guangxi, and Hainan, and Zhanjiang Bay is located in this gravity gradient belt. We analyzed and interpreted more than eighty images obtained with many different methods one by one, then, got the result that Zhanjiang Bay area is embraced by two giant fault belts trending in the NEE and NW direction respectively, and its interior is crossed over by the NE-trending fault belt. These three fault belts are well shown in the gravity images, especially the NEE-trending fault belt and NW one. The gravity isolines and gradient belts or the thick black stripes of the NEE-and NW-trending fault belts are displayed apparently. Also, these gravity structures are good in continuity, extend vastly and cut deeply. What is more, the NEE-trending fault belt plays a leading and region-controlling part. It shows good continuity, and cuts off the NW-and NE-trending faults frequently and intensively. The NW-trending fault belt also is good in continuity and cuts the NEE-and NE-trending faults relatively frequently and strongly, but it is restricted by the NEE-trending one. Last, the continuity of the NE-trending fault is worse and the strength cutting off NE-and NW-trending faults is significantly weak, just in some segments and in the shallow positions. According to the characteristics above and combined with the analyses of geological structure and earthquake activity, the conclusion can be drawn that the NEE-trending fault is the controlling structure and the main seismogenic structure in Zhanjiang Bay area, and the NW-trending fault is the second one. They conjugate and act together. Therefore, Zhanjiang Bay has the tectonic condition for generating MS=6.5 earthquakes.
Reference | Related Articles | Metrics
EFFECT OF TSUNAMIS GENERATED IN THE MANILA TRENCH ON CHINA MAINLAND
SHI Feng, HE Hong-lin, ZHOU Ben-gang, WEI Zhan-yu, BI Li-si
SEISMOLOGY AND GEOLOGY    2018, 40 (3): 579-589.   DOI: 10.3969/j.issn.0253-4967.2018.03.006
Abstract1524)   HTML    PDF(pc) (4096KB)(752)       Save
Tsunami is one of the most devastating natural coastal disasters. Most of large tsunamis are generated by submarine earthquakes occurring in subduction zones. Tsunamis can also be triggered by volcano eruptions and large landslides. There are many records about "sea-overflow" in Chinese ancient books, which are not proved to be tsunamis. Tectonics and historical records analysis are import to forecast and prevention of tsunami. Consider the tectonic environment of the China sea, the possibility of huge damage caused by the offshore tsunami is very small. And the impact of the ocean tsunami on the Bohai sea, the Yellow sea, and the East China sea is also small. But in the South China Sea, the Manila subduction zone has been identified as a high hazardous tsunamigenic earthquake source region. No earthquake larger than MW7.6 has been recorded in the past 100a in this region, suggesting a high probability for larger earthquakes in the future. If a tsunamigenic earthquake were to occur in this region in the near future, a tragedy with the magnitude similar to the 2004 Indian Ocean tsunami could repeat itself. In this paper, based on tectonics and historical records analysis, we have demonstrated that potential for a strong future earthquake along the Manila subduction zone is real. Using a numerical model, we have also shown that most countries in the South China Sea will be affected by the tsunamis generated by the future earthquake. For China, it implies that the maximum wave height over 4.0 meter on China mainland, especially the Pearl River Estuary. But the island, local relief maybe influence the maximum wave. But it takes nearly 3 hours to attack China mainland, if there is the operational tsunami warning system in place in this region, should be greatly reduced losses. And the simulated results are conformable to historical records. It indicates that the tsunami hazards from Manila trench to China mainland worthy of our attention and prevention.
Reference | Related Articles | Metrics
RESPONSES OF THE S-A DOUBLE-LOG GRAPH, CONCAVITY INDEX AND STEEPNESS INDEX OF CHANNELS TO THE TECTO-NIC MOVEMENT OF THE HUOSHAN PIEDMONT FAULT
BI Li-si, HE Hong-lin, XU Yue-ren, WEI Zhan-yu, SHI Feng, SUN Hao-yue
SEISMOLOGY AND GEOLOGY    2017, 39 (6): 1158-1172.   DOI: 10.3969/j.issn.0253-4967.2017.06.005
Abstract651)   HTML    PDF(pc) (4844KB)(445)       Save
The Huoshan piedmont fault is a small watershed region in Shanxi Province. We utilized the high-resolution DEM data and the stream-power incision model which describes the relationship between the tectonic uplift and fluvial incision to analyze the S-A double-log graph, concavity index (θ)and steepness index (logks) of the 64 channels across this fault and discuss their responses to the tectonic movement of the fault. The results show that (1)the S-A double-log graphs all exhibit an obvious convex form, which is the direct expression of the response to the situation that the bedrock uplift rate is higher than the fluvial incision rate. (2)All of the concavity index (θ)values of 64 channels are lower than 0.35 with an average value of 0.223, much lower than the empirical value (0.49)of the rivers in steady state. These low values are the quantitative reflections of the channels' slightly concave profiles. Meanwhile they imply that these channels across the fault are very young. There is no enough time for them to adjust the profiles through the fluvial incision to the steady state because of the fault's frequent and strong tectonic movements. (3)The steepness index values of the channels located in the Laoyeding Mt. are highest, while they are lower in the northern and southern mountains. Moreover, the steepness index values of the channels in the northern mountains, on average, are higher than those of the channels in the southern mountains. To a certain extent, this distribution of the steepness index corresponds to the difference in the uplift rates of the Huoshan piedmont fault. It means that the uplift rate of the middle fault segment in the Laoyeding Mt. is highest, and the uplift rate of the northern segment is higher than that of the southern segment.
Reference | Related Articles | Metrics
RESEARCH ON THE RELATIONSHIP BETWEEN FRACTAL FACTORS AND TECTONIC ACTIVITY——A CASE STUDY OF SOUTHWESTERN YUNNAN BLOCK
SHI Feng, HE Hong-lin, Alexander L Densmore, BI Li-si, WEI Zhan-yu
SEISMOLOGY AND GEOLOGY    2016, 38 (4): 862-873.   DOI: 10.3969/j.issn.0253-4967.2016.04.005
Abstract688)      PDF(pc) (4335KB)(579)       Save

Geomorphology could record long-term accumulation of tectonic movement and quantify it by relevant parameters.But because the influences of other factors such as climate and lithology,how to use the relevant parameters to reveal the relationship between geomorphology and tectonics is a research hot spot.In this paper,we utilize the variogram method and the cellular fractal model to estimate parameters such as the fractal dimension (D) and ordinate intercept (γ) from the SRTM3 DEM using a moving window operation.We compare the distribution characteristics of the parameters in different climate and lithology.The results indicate that the correlation between the parameters and lithology or climate is very poor.The fractal dimension (D) reveals a very good correlation with tectonics,which is low in tectonically inactive areas and high in active areas.It implies that fractal dimension (D) may be a new method for research of regional tectonic movement.

Reference | Related Articles | Metrics
IDENTIFY PALEO-EARTHQUAKES USING QUANTITATIVE MORPHOLOGY OF BEDROCK FAULT SURFACE——A CASE STUDY ON THE HUOSHAN PIEDMONT FAULT
HE Hong-lin, WEI Zhan-yu, BI Li-si, XU Yue-ren
SEISMOLOGY AND GEOLOGY    2015, 37 (2): 400-412.   DOI: 10.3969/j.issn.0253-4967.2015.02.005
Abstract427)      PDF(pc) (6424KB)(746)       Save

The quantitative analysis of morphologic characteristics of bedrock fault surface is a useful approach to study faulting history and identify paleo-earthquake. It is an effective complement to trenching technique, especially to identify paleo-earthquakes in a bedrock area where the trenching technique cannot be applied. In this paper, we calculate the 2D fractal dimension of three bedrock fault surfaces on Huoshan piedmont fault in Shanxi graben, China using the isotropic empirical variogram. Taking average fractal dimensions of every horizontal tape and plotting them along the vertical axis, we find the fractal dimension presents pronounced segmentation in vertical direction. This step change of the average fractal dimensions demonstrates obvious segmentation of the fault surface morphology. Then, the segmentation of fault surface morphology, showing different exposure duration of each segment, is caused by periodic faulting earthquake, but not continuous erosion. Therefore, taking best normal fitting of average fractal dimensions of each segment as a characteristic value to describe the surface morphology of the fault surface segment, the characteristic value can be used to estimate the exposure duration of the fault surface segment and then the occurrence time of the faulting earthquake that made the segment exposed. The width of each fault surface segment can also be regarded as an approximate vertical coseismic displacement. Based on the segmentation of quantitative morphology of the three fault surfaces on the Huoshan piedmont fault, we identify three faulting earthquake events. Combined with trenching results reported by previous researches, we attempt to fit an empirical relationship between the exposure time and the morphological characteristic value on the fault. The co-seismic vertical displacement of a characteristic earthquake on the Huoshan piedmont fault is estimated to be 3.5m(3~4m), the average width of all middle fault surface segments. Moreover, the small gap of average 0.5~1m width between two adjacent segments, where fractal value increases gradually with the increased fault surface height, is inferred to be caused by erosion between two faulting earthquakes.

Reference | Related Articles | Metrics
SLIP RATE ON THE SOUTH SEGMENT OF DALIANGSHAN FAULT ZONE
WEI Zhan-yu, HE Hong-lin, SHI Feng, XU Yue-ren, BI Li-si, SUN Hao-yue
SEISMOLOGY AND GEOLOGY    2012, (2): 282-293.   DOI: 10.3969/j.issn.0253-4967.2012.02.007
Abstract1358)      PDF(pc) (12881KB)(970)       Save
Daliangshan Fault zone constitutes an important part of the eastern boundary of Sichuan-yunnan active block. The studies of slip rate along the fault is not only significant to the crust movement and deformation pattern on the southeast edge of Tibetan Plateau,but also has great value in seismic hazard assessment and mid-and long-term forecasting of earthquake of the Daliangshan region. Through detailed field work along the south segment of Daliangshan Fault zone,namely the Butuo Fault and the Jiaojihe Fault,and based on accurate RTK(GPS)survey for the alluvial fans and activity dating,we suggest that left-lateral slip rate of the south segment of the fault zone is between 2.5~4.5mm/a,and the slip rate of Jiaojihe Fault is slightly higher than that of the Butuo Fault. Due to partitioning of part of the strike-slip component on the Daliangshan Fault zone,there is an obvious deficit in the displacement and slip rate on the Anninghe-Zemuhe Fault,compared to the Xianshuihe and Xiaojiang Faults. Comparing to the slip rates between Daliangshan Fault and Anninghe-Zemuhe Fault,it is found that they have similar horizontal slip rate,indicating the seismicity level of the Daliangshan Fault will not be lower than that of Anninghe-Zemuhe Fault. As the Daliangshan Fault gradually replaces the role of Anninghe-Zemuhe Fault in the Xianshuihe-Xiaojiang Fault system,the seismicity on the Daliangshan Fault zone will increase,and the Dalianghan region will have a higher risk of earthquake damage.
Reference | Related Articles | Metrics
THE EXTRACTION OF KNICKPOINT SERIES BASED ON THE HIGH RESOLUTION DEM DATA AND THE IDENTIFICATION OF PALEO-EARTHQUAKE SERIES —A CASE STUDY OF THE HUOSHAN MTS.PIEDMONT FAULT
BI Li-si, HE Hong-lin, XU Yue-ren, WEI Zhan-yu, SHI Feng
SEISMOLOGY AND GEOLOGY    2011, 33 (4): 963-977.   DOI: 10.3969/j.issn.0253-4967.2011.04.019
Abstract1902)      PDF(pc) (1215KB)(1552)       Save

When a reach of a stream is steepened with respect to the adjoining reach,it defines a topographic knickpoint.A knickpoint is supposed to be a response to the base-level changes,and the base-level of a drainage basin is influenced by the fault movement.The formation of a knickpoint on a gully long-profile,whose base-level is the footslope of the fault scarp,is associated very closely with the vertical movement of a fault,therefore,the ages of paleo-earthquake events can be estimated by the knickpoint series along the longitudinal profile of a gully.We have made a case study of the Huoshan Mts.Piedmont Fault,and extracted tens of gullies across the fault based on the high-resolution DEM data and identified out knickpoints in 23 gullies.There are 5 gullies with only one knickpoint which are laid on the fault.And there are two gullies having two knickpoints with the latest one laid on the fault.The positions of these knickpoints and their higher height ranging from 4~9m imply that there are several knickpoints superposed together and the knickpoints have not migrated upstream.The other 16 gullies respectively have 2~3 knickpoints.The latest knickpoints have been migrated upstream to a distance of 40~70m from the fault.The knickpoints of intermediate ages are at a distance of 150~150m upstream from the fault and the oldest ones at a distance of 300~500m.Under the conditions that the latest knickpoints are associated with the 1303 MW8.0 Hongdong earthquake(Event Ⅲ)and that the gullies keep the same rate of headward erosion during the Holocene,Event Ⅱ is estimated to take place during 3336~2269a B.P. and Event Ⅰ is estimated to take place during 3336~2269a B.P. , respectively.The recurrence of events is about 1500~2600a.These results are consistent with those obtained through the trench investigations.

Reference | Related Articles | Metrics