The reconstruct of the stick-slip and creep histories is essential for understanding fault activities and seismic hazard assessment. Distinguishing stick-slip and creep using geodetic technology has become a hot research area in recent years, but distinguishing and estimating seismic slip and creep on geological timescales(e.g., over hundreds of years)is challenging due to the lack of historical, geodetic and remote sensing data extending back more than a few hundred years. This study uses a newly developed dating technique(rock surface optically-stimulated-luminescence(OSL)dating)combined with the OSL decay parameters of granite samples from the Langshan fault in Inner Mongolia to simulate optically stimulated OSL-depth curves and depths of half saturation of luminescence signal under various scenarios such as fault seismic slipping, creeping, and erosion of colluvial wedge. The study compares these OSL-depth profiles, especially the depths of the half saturation, under different slipping modes, and summarizes their features.
During fault seismic slip, samples at different heights along the fault scarp display a “step-like” distribution pattern at their depths of half saturation. While during creep, however, they exhibit a “slope-like” pattern. Such differences may lie in that the slope during accelerating creeping is steeper than the slope during constant-speed creeping. Correspondingly, the resolution of residual luminescence-depth profile and depth of half saturation is also higher during accelerating creeping. During intra-earthquake creep events between seismic slip occurrences on the bedrock fault scarp, the distribution of half-saturation depth in the samples includes segments resembling both “steps” and “slopes”, which indicate the seismic slip and creep activities of the fault respectively. If the samples at the base of the colluvial wedge have had a sufficiently long last exposure time, the luminescence-depth profile and half-saturation depth distribution due to the erosion of the colluvial wedge would be approximately the same as in the three-phase seismic slip scenario. This indicates that samples previously buried by the colluvial wedge may be considered within the seismic displacement. Conversely, if the last exposure time of the base samples at the base of the colluvial wedge is short, the bleaching depth of the luminescence signal of these base samples will be noticeably shallower than that of the other samples within the seismic displacement, indicating the observed erosion of the colluvial wedge in this case. Furthermore, the seismic displacement ideally should include the buried location of the colluvial wedge. Therefore, when the luminescence curves and half-saturation depth distributions fail to identify the presence of the colluvial wedge, it is acceptable to include the buried location of the colluvial wedge in the seismic displacement calculation. Conversely, the luminescence-depth curves and half-saturation depth distributions document the erosion caused by the colluvial wedge. The simulation results demonstrate that this method can effectively distinguish between fault slipping and creeping, obtain corresponding displacements, and potentially record the erosion of colluvial wedge.
This study also analyzes the temporal resolution of the method for distinguishing fault activity times and the spatial resolution for quantifying displacements. The specific situation is as follows. When exposure age of the bedrock fault scarp is within a thousand years, the rock surface OSL dating method can easily distinguish types of active slips and seismic displacements for the earthquakes with a recurrence interval of hundreds of years. When exposure age of the bedrock fault scarp is in the range of 100-101ka, the method can easily distinguish types of active slips and seismic displacements for the earthquakes with a recurrence interval exceeding a thousand years. When exposure age of the bedrock fault scarp is over ten-thousand years, the resolution of this method may be significantly reduced. The spatial resolution of seismic displacements using this method depends on interval between sampling and testing samples, typically in 10~30cm.
The MS7.1 earthquake in Wushi, Xinjiang on January 23, 2024, represents the largest earthquake in the Tianshan seismic belt since the 1992 Suusamyr MS7.3 earthquake in Kyrgyzstan. Preliminary precise aftershock localization and initial field investigations indicate an NE-trending aftershock zone with a length of 62km that is concentrated at the mountain-basin transition area. This event produced geological hazards, including slope instability, rockfalls, rolling stones, and ground fissures, primarily within a 30-kilometer radius around the epicenter. The epicenter, located approximately 7 kilometers north of the precise positioning in this study, witnessed a rapid decrease in geological hazards such as collapses, with no discernible fresh activity observed on the steep fault scarp along the mountainfront. Consequently, it is inferred that the causative fault for this main shock may be an NW-dipping reverse fault, with potential rupture not reaching the surface.
Moreover, a surface rupture zone with a general trend of N60°E, extending approximately 2 kilometers, and displaying a maximum vertical offset of 1m, was identified on the western side of the micro-epicenter at the Qialemati River. This rupture zone predominantly follows the pre-existing fault scarp on higher geomorphic surfaces, indicating that it is not new. Its characteristics are mainly controlled by a southeast-dipping reverse fault, opposite in dip to the causative fault of the main shock. The scale of this 2-kilometer-long surface rupture zone is notably smaller than the aftershock zone of the Wushi MS7.1 earthquake. Further investigation is warranted to elucidate whether or not the MS5.7 aftershock and the relationship between the SE-dipping reverse fault responsible for the surface rupture and the NW-dipping causative fault of the main shock produced it.
Fold scarps, a type of geomorphic scarp developed near the active hinge of active folds due to the local compressive stress, are formed by folding mechanisms of hinge migration or limb rotation. At present, there are several proven methods, which are only based on the fold scarp geometry combined with the occurrences of underlying beds and do not use the subsurface geometry of thrust fault and fold to obtain the folding history. The use of these methods is of great significance to illuminate the seismic hazards and tectonic processes associated with blind thrust systems.The Sansuchang fold-thrust belt is a fault-propagation anticline controlled by the Sansuchang blind thrust fault located in the southern Longmen Shan foreland area. Previous study used the area-depth method to calculate the shortening history of the Sansuchang anticline since the late Pleistocene(73~93ka)based on the terrace deformation of Qingyijiang River. However, due to the serious erosion damage to the terrace after its formation, the shortening history obtained by incomplete terrace deformation needs to be further verified.A~9km long scarp was found on the Dansi paleo-alluvial fan on the eastern limb of the Sansuchang fold-thrust belt. According to the detailed field investigation and the fold geometry built by the seismic profile, we found the scarp is near the synclinal hinge, which separates beds dipping 10°~17° and 43°~57° east and parallels with the Sansuchang fold hinge. Therefore, we determined the scarp is a fold scarp formed by the forelimb hinge migration of the fault-propagation fold.The maximum height of the scarp, extracted by the swath topographic profile across the scarp, is about 28~35m. According to the parameters of the fold scarp height, the underlying beds dip angle near the fold scarp, and the quantitative geometric relationship between shortening and the blind Sansuchang thrust fault, it can be estimated that, after the deposition of the Dansi paleo-pluvial fan((185±19)ka), the anticline forelimb horizontal shortening rate is~0.1mm/a, the fault tip propagation rate of the Sansuchang blind fault is(0.5+0.3/-0.1)mm/a, and the total shortening rate of the Sansuchang anticline is(0.3+0.2/-0.1)mm/a.The folding rates of the Sansuchang fold-thrust belt since the late middle Pleistocene has been obtained by the local deformation characteristics of the fold scarp in this study. The result is basically consistent with the shortening rate since late Pleistocene obtained by complete terrace deformation across the anticline, which proves that the shortening rate of the Sansuchang anticline is relatively stable at~0.3mm/a. It provides a new idea for studying the activity characteristics of fold-thrust belts in the southern Longmen Shan foreland thrust belt area with a fast denudation rate and discontinuous geomorphic surface.
There are many examples of exposed or buried rock surfaces whose age is of interest to geologists and archaeologists. Luminescence dating is a well-established method of absolute chronology which has been successfully applied to a wide range of fine-grained sediments from hundreds of years to several hundred thousand years. Optical stimulated luminescence (OSL) has been recently proposed as a new method to date these rock surfaces (Laskariset al., 2011; Sohbatiet al., 2012a; Chapotet al., 2012; Pedersonet al., 2014; Sohbatiet al., 2015; Freieslebenet al., 2015). The basic principle is that luminescence signal of rock surface will soon decay when the rock is exposed to sunlight. When the rock surface is turned to be buried side, the OSL signal begins to accumulate again. With the variation of residual luminescence with depth, it is possible to estimate exposure and burial history of the rock. This article describes briefly the different luminescence dating methods for rock surfaces, its progress, application examples and present problems. For instance, Sohbatiet al. (2011) studied the depth dependence of the bleaching of the IRSL signal from granitic rocks, Laskaris and Liritzis (2011) proposed a mathematical function to describe the attenuation of daylight into rock surfaces, Sohbatiet al. (2012a) developed their model to include the environmental dose rate, Sohbatiet al. (2012b) overcame the problem of parameter estimation by using a known-age road-cut sample for calibration, Sohbatiet al. (2012c) further developed the OSL surface exposure dating model by including the simultaneous effect of daylight bleaching and environmental dose rate, and so on. These studies indicate that OSL dating method for rock surface can be applied widely to studies of geological and geomorphological evolution, archeology and Quaternary tectonic activity.
The MW6.6 Arketao earthquake,which occurred at 14:24:30 UTC 25 November 2016 was the largest earthquake to strike the sparsely inhabited Muji Basin of the Kongur extension system in the eastern Pamir since the M 7 1895 Tashkurgan earthquake.The preliminary field work,sentinel-1A radar interferometry,and relocated hypocenters of earthquake sequences show that the earthquake consists of at least two sub-events and ruptured at least 77km long of the active Muji dextral-slip fault,and the rupture from this right-lateral earthquake propagated mostly unilaterally to the east and up-dip.Tectonic surface rupture with dextral slip of up to 20cm was observed on two tens-meter long segments near the CENC epicenter and 32.6km to the east along the Muji Fault,the later was along a previously existing strand of the Holocene Muji fault scarps.Focal mechanisms are consistent with right-lateral motion along a plane striking 107°,dipping 76° to the south,with a rake of 174°.This plane is compatible with the observed tectonic surface rupture.More than 388 aftershocks were detected and located using a double-difference technique.The mainshock is relocated at the Muji Fault with a depth of 9.3km.The relocated hypocenters of the 2016 Arketao earthquake sequence showed a more than 85km long,less than 8km wide,and 5~13km deep,NWW trending streak of seismicity to the south of the Muji Fault.The focal mechanism and mapping of the surface rupture helped to document the south-dipping fault plane of the mainshock.The listric Muji Fault is outlined by the well-resolved south-dipping streak of seismicity.The 2016 Arketao MW6.6 and 2015 Murghob MW7.2 earthquakes highlight the importance role of strike-slip faulting in accommodating both east-west extensional and north-south compressional forces in the Pamir interior,and demonstrate that the present-day stress and deformation patterns in the northern Pamir plateau are dominant by east-west extension in the shallow upper crust.
The fold scarp, a type of geomorphic scarp on the land surface formed by folding without fault offsets on the surface, can be used to constrain folding and slip rates and kinematics and to reconstruct a folding history despite a lack of full constraints on the subsurface structure. Recently, the conceptual, geometric, and kinematic models of fold scarps formed by fault-bend folding(fault-bend fold scarp)were developed. But for other types of fold scarp, there are few detailed investigations till now. Located at southern foreland of Chinese Tianshan, the Mingyaole anticline is interpreted to be a detachment fold. On the Kezilesu river terraces in the south limb, a series of detachment fold scarps occur. The height, width, and slope of fold scarps on the T2 and T3b terraces are ~16m/~40m/~25° and ~20m/~50m/~26° respectively. The scarp locations are correlated with an underlying synclinal hinge separating a 50° dip and a 15°dip domain and the strike of the scarp is parallel with the hinge. Detailed geologic and geomorphic mapping and dGPS survey data reveal important characteristics of detachment fold scarp. 1)The fold scarps are formed by synclinal hinge migration. 2)During initial growth, the height, width and slope of the fold scarp increase gradually. When the fold scarp's horizontal width increases to be at least twice that of the hinge, the slope will approach a maximum, and will subsequently remain constant even as the height and width continue to increase gradually. 3)The scarp height and underlying bedding dips on either side of the hinge can be used to calculate incremental shortening absorbed by the fold scarp. Based on the height ~16m of the fold scarp on the T2 and its exposure age ~8.0ka, the shortening rate absorbed by south limb of the Mingyaole fold is estimated to be ~1.3mm/a. Despite similarities with fault-bend fold scarps, detachment-fold scarps have some pronounced differences, which suggest that the type of fold scarp should be defined prior to calculating folding rates.
Folding growth in three dimensions involves shortening in transversal direction,uplift in vertical direction and lateral propagation in longitudinal direction. The impact of these three components changes along the fold's strike: the middle part is dominated by shortening and uplift,and deformation neighboring the fold tip involves not only shortening and uplift,but also strong lateral propagation. Previous studies are focused on the middle part,and the fold tip,a relatively special part,however,is poorly investigated. Thereby,how does the fold tip grow,what is the deformation difference between fold tip and the middle part,and how do terraces deform in response to folding growth?Our study to the southwestern tip of the Mingyaole anticline,located at the Pamir-Tianshan convergent zone,indicates terrace surfaces are strongly back-tilted,and display increasing dips with age,implying a limb rotation mechanism. According to the OSL ages of the T2b,T3b and T4a,as well as a magnetostratigraphy age of underlying bedrock,rotation angle increments of the dip domain 46° display a parabola tendency with the age of<~0.35Ma,(93.9±18.7)ka,(82.6±16.5)ka and(19.4±2.9)ka,and the average rotation rate is>(0.13±0.01)°/ka,(0.08±0.02)°/ka,(0.05±0.01)°/ka and(0.04±0.01)°/ka,which display an obviously decreasing tendency too. However,the shortening rate absorbed by this dip domain keeps constant.The fluvial terraces display not only tilted and uplifted in response to the shortening and uplift of the fold,but deformed in response to lateral propagation. Toward west,density,width and depth of gullies on the terraces decrease,and elevation to the riverbed of the terrace surface,height of the terrace riser as well as rotation angles of terrace surfaces display a decreasing tendency too,both of which are consistent with the fold's western-ward propagation. Based on the magnetostratigraphy age of~1.6Ma at the Kapake valley section,the average western-ward lengthening rate is about 16~16.8mm/a.
Terrestrial in situ cosmogenic nuclides burial dating has a promising application in dating of late Cenozoic detrital sediments,for example,cave sediments,fluvial sediments and moraine.This method relies on a pair of cosmic-ray-produced nuclides that are produced in the same rock or mineral target at a fixed ratio,but have different half-lives.For example, 26 Al and 10 Be are produced in quartz at 26 Al :10 Be=6.75 :1.The ratio is not affected by latitude and altitude.After sediments are buried,the ratio would become less as time goes.Therefore, 26 Al/10 Be ratio can be used as a geological clock.The dating range can be from several hundreds of thousand years to five million years.In this article,we introduce four methods and their applications: exposure-burial diagram method,depth profile method,isochron method, 26 Al-21 Ne and 10 Be-21 Ne method.Exposure-burial diagram method is often applied to cave sediments dating, for exposure-burial history of cave deposits is easy.Depth profile method is applied to fluvial sediments dating.There is a good application for isochron approach in till-paleosol sequences in North America. 26 Al-21 Ne and 10 Be-21 Ne method has a great potential applicaton in future for its larger dating time and less uncertainty than other methods.The dating method still has many problems.Firstly,there are no exact half-lives.For example,there is still controversy for 10 Be half-life.Its estimate is 1.51±0.06Ma or 1.36±0.07Ma.Secondly,it is also a debate how to determine nuclides' production rates.In addition,post-burial or preburial erosion rate,inheritance nuclides concentration,post-burial nuclide production,effect of post-burial or preburial muonic production,sediment rework,complicated exposure-burial history of sediments all bring great challenges to cosmogenic nuclides dating.
To carry out the project "Study on paleo-tsunami in east and southeast seashore area of China" supported by China Ministry of Science and Technology,we made a study tour to Japan in April,2007.In this visit,we investigated roughly the tsunami deposits in Ishinomaki Plain,Miyaki County,Japan,where a huge earthquake of MW 9.0 occurred at March 11,2011.This earthquake caused a great tsunami along the northeast coast of Honsyu Island,Japan,bringing lots of death and huge economic loss.To understand the tsunami history in this area and the methods of investigating tsunami deposits,it is necessary to introduce briefly our investigation in Ishinomaki Plain,Miyaki County,Japan.Our investigation results demonstrated three tsunami events occurred in this area. The latest one occurred before 915 AD,when the Towada volcano erupted and the tephra from this eruption covered almost all of the Northeast Japan,corresponding to the 869 AD Jogan earthquake tsunami.
The Tashkurgan-Yarkant River,which is the upper reach of the Tarim River,originates from the Karakoram Mountains in the west syntaxis of the Tibetan Plateau.Thick terrace sediments are widespread along the Tashkurgan-Yarkant River.These deposits contain geologic fingerprints that allow identification of the environmental changes and geologic hazards.However,few geochronological data was available on these sedimentations to allow us to build an irreproachable age model.4 samples of fine grains from one terrace profile were dated by optically stimulated luminescence(OSL)dating method.In darkroom,fractions of fine grains(4~11μm)were extracted from the bulk samples.OSL signal measurements were performed on an automated Daybreak system.Identical De plateau in the thermal treat was observed in preheat plateau test.Tests of luminescence characteristics confirm the suitability of the material for OSL dating.Our results indicate the deposition age for these sediments is between 4.3~7.3ka.After the river terrace deposited,the river has deeply incised for 27±5m,with the incision rate 6.3±1.2mm/a.The thermochronologic data show that the magnitude of exhumation decreases from upstream(west)to downstream(east)along the Tashkurgan-Yarkand River.These data may reflect the the active uplift process of Mustagh Ata antiform.
The research of optical dating about modern strong earthquake sediments will be useful for understanding geological significance of paleoearthquake related sediments,improving dating precision and accuracy,and better understanding the law of earthquake occurrence.This article chooses some typical sediments related with 2008 Wenchuan earthquake, such as dammed lake deposits,floodwater deposits and ejected sands, to do optical dating of fine-grained quartz.Preliminary results from optical dating of fine-grained quartz extracted from 11 samples suggest that fine-grained quartz is sensitive and De values obtained from the three sections indicate residual De up to 10Gy. Caution should be taken for optical dating of sediments related to paleoearthquake with a recurrence interval of hundreds or thousands of years,but the effect can be neglected for the paleoearthquake with a recurrence interval of ten thousands or hundred thousands of years.Residual De values less than 0.2Gy are observed in two samples collected from pre-earthquake surface.Therefore,we should collect samples on pre-earthquake surface to limit the event time.
In historical records,no earthquake of magnitude comparable with that of the Wenchuan MS 8.0 earthquake has ever been reported in Chengdu and Longmenshan regions.The penultimate event similar to the 12 May 2008 MS 8.0 was revealed by the surface ruptures in the vicinity of Xiaoyudong.It is important,therefore,to date accurately when the prior large earthquake happened.This paper presents 7 optically stimulated luminescence(OSL)ages from Xiaoyudong trench.We investigate the use of simplified multiple aliquot regenerative-dose(SMAR)protocol and single aliquot regenerative-dose(SAR)protocol from fine-grain quartz to date deposits associated with earthquake.The results of SMAR and SAR protocols are consistent.The behavior of quartz to different internal consistency checks of SAR protocol(preheat plateau,thermal transfer,recycling ratio,recuperation and growth curves)and of SMAR protocol(dose recovery)used for the dose estimation method was satisfactory.Various internal consistency tests of the measurement protocols indicate that the dose estimates from the fine grain quartz are accurate and the optical ages are reliable.The preliminary OSL ages indicate that the last large earthquake happened between 1.7~2.2ka and the slip rate of Xiaoyudong Fault was 1.0±0.08mm/a at least in Holocene.
The fluvial terrace has plenty of paleoclimate and paleoenviromental information which play an important role in paleoclimate and paleoenviromental researches.In this paper,we drilled a 42.85m-long core(N06S2)in 2007,which was located in the south bank of Yangtze River at Shifuqiao in Qixia district of Nanjing City.Firstly,fine quartz grains(4~11μm)were extracted from bulk samples in dark room,and the quartz purity tests were conducted.The results show that purity can satisfy the experiment.All measurements were performed on an automated Daybreak 2200 TL/OSL system with blue(470±5nm)light stimulation and U-340 luminescence detection filters.Thick source alpha counting(TSAC)was used to measure the uranium and thorium concentrations.The potassium content was determined using flame spectrophotometer.Secondly,the preheat plateau test and dose recovery test were performed on one sample using the SAR protocol.The results indicate that the fast component dominates the OSL signals.In preheat plateau test,identical De in the thermal treat from 160~260℃ was observed,thus we use the preheat temperature of 220℃ for 10 seconds.The recuperation ratios of zero point are below 2%and the recycling ratios lie between 0.9 and 1.1.In dose recovery test,OSL signal sensitivity changes are well corrected.Tests of luminescence characteristics confirm the suitability of the material for OSL dating.At last,samples from this drilling core were systematically dated by optically stimulated luminescence(OSL)dating method,and samples which contain organic matters were dated by AMS14 C.The results show that the De values from the two methods accord with each other very well.However,OSL dating results show that there is a hiatus in this core,and the hiatus,which ranges from 1.9ka to 7.9ka,may be the result of change of Yangtze River's channel or the erosion of the river.The ages of the fluvial deposition mainly range from 0.26ka to 1.9ka and 7.9ka to 9.1ka,it could be attributed to the results of paleoclimate and sea levels change.Meanwhile,study results on pollen and spores show that the paleoclimate has changed from warm wet to temperate wet during the stage of hiatus.
This paper presents a comparison of the calendar range of individual paleoearthquake calculated by conventional calibration,Bayesian analysis of series of peat samples as well as depth-age wiggle matching.The results suggest that: (1)The Bayesian analysis provides an excellent means to enhance chronological resolution when applied to a series of radiocarbon dates from sections with clear stratigraphic relationships.Such application can assess systematic errors when combined with independent chronological information,and determine the optimum chronological information for specific events and contexts.(2)The calendar ranges of series of samples collected from the same peat but different sampling thickness were compared with that of depth-age wiggle matching.The result shows that the chronological resolution by depth-age wiggle matching for the peat sample with thickness less than 2cm could achieve less than 100a.Therefore,the condition to obtain a high resolution calendar age is to have 5~6 samples with 0.5~2cm sampling thickness each and the interval of samples is 0.5~1cm.(3)The calendar range of paleoearthquakes constrained by the Markov chain Monte Carlo(MCMC)Bayesian analysis model,which constructs the order of samples according to their position in the strata with series of radiocarbon dates,was compared with calendar range by the conventional method.The results show that Bayesian analysis could obtain high-precision calendar dates for closely spaced samples.(4)Therefore,the calendar interval of the paleoearthquake event on the middle segment of Huaiyuan Fault was inferred as 1340~1114cal a BP(2σ)by the above systematical comparsion.
Locating at eastern end of the Pamir Front Thrust(PFT),the Mushi anticline grows initiating from early-Pleistocene till now.The anticline,with a gentle south limb and steep north limb,outcrops Pliocene Atushi formation and lower-Pleistocene Xiyu formation.Topographic profiles and drainage pattern indicate the lateral growth of the anticline from west to east.Combining mapping data and seismic profiles from the neighboring area,we find the Mushi anticline is a detachment fold,with a total shortening of ~0.7km and a total uplift up to~1.5km.Northern part of the anticline is dominated by a series of wide,flat terraces.According to OSL samples,the age of the terrace T2a,T3and T4 is 15.8±2.4ka,55.1±10.3ka and 131.4±23.9ka respectively.Correlating with Marine Isotopic stages(MIS),the formation of terraces has some relationship with global climate change.As growing of the anticline,terrace surfaces deformed obviously,which is characterized by fault scarps,surface tilting or back-tilting,folding scarps and lateral tilting.Deforming patterns of the terrace surfaces indicate the Mushi anticline grows by limb rotation in late-Pleistocene.Using calculating models,we can confine the minimum shortening rate is 1.6±0.3mm/a and the minimum uplift rate is 1.9±0.3mm/a. Longitudinal profiles of terraces indicate the Mushi anticline grows laterally through limb rotation.According to relationship between uplift and lateral propagation,we can acquire a faster eastward lateral propagation rate of the anticline during the period of 131~16ka,with a rate about 14.6±3.6mm/a; however,since 16ka,the rate reduced to 1.7±0.3mm/a,implying the anticline tip stopped propagating to the east,and growing of the anticline was mainly dominated by lateral limb rotation in late Quaternary.
The Mushi anticline locates at the frontier Pamir arcuate nappe tectonics belt(PFT),which is a detachment fold with a gentle south limb and steep north limb,and its earth crust minimum shortening is ~0.7km with uplift up to 1.5km.The north limb fault of Mushi anticline is composed of a series of obsequent slope fault scarps,and the distribution of vertical displacements among different fault scarps presents a pattern of one increasing and the other decreasing.No matter of the entire western segment of the northern limb faults or a single fault,the displacement distribution is asymmetric,that is,high in the east and low in the west,and the same to displacement gradient.This may reflect the late Quaternary folding of Mushi anticline as being intensive in the east and feeble in the west.The fault may be a shallow,rootless secondary fault formed during the growth process of the anticline in order to accommodate the constantly decreased space of anticline nucleus as the fold tightened gradually.The late Quaternary shortening rate of the fault is 0.8mm/a,absorbing only one fifth of the nowadays crustal shortening rate of the region.The growth of Mushi anticline and the north limb fault of Mushi anticline both are in accordance with global fault dataset scaling relationship,that is,fault length is over 100m.The power-law regression scaling exponent of west segment of the northern limb fault of Mushi anticline is n=1.37(R2=0.88),and its specific value(k)of maximum fault displacement and fault length is far less than that of the Mushi anticline,which is ~4.3%,but 1~2 orders of magnitude larger than that of global fault dataset(10-4~10-5). This may show that the northern limb fault of Mushi anticline is the offshoot of several moderate strong earthquakes,and it is still in initial stages.
The western Tarim Basin is a convergent zone of the Southwestern Tianshan and the Pamir,and there have been big debates about its exact boundary.However,in the Mayikake Basin,the boundaries of two tectonic systems are very clear: the north-vergent Pamir Front Thrust is the leading edge of the Pamir,and south-vergent thrust at south limb of the Wulagen anticline,which was discovered in recent field study,is the south margin of the Southwestern Tianshan.The thrust created 7.5~17.6m high scarps on the Tk3(the high terrace of the Kezilesu river)and Tb3(the high terrace of the Bieertuokuoyi river),with an occurrence of 6°∠15°.To the west,the thrust cuts all terraces of the Bieertuokuoyi river and the underlying youngest alluvial fans ultimately.The total length of thrust trace is about 12km.As activity of the thrust,lots of subparallel flexural-slip scarps are formed on terrace surfaces,which make terrace surfaces obviously differential back-tilted(tilted to south),and the locations of tilted degrees changed are corresponding to locations of flexural-slip faults.Shortening at south limb of the Wulagen anticline is absorbed by the thrust and flexural-slip faults,which is about ~71.4m since abandonment of the high terrace.Regional correlation indicates the high terrace is the same surface as the T2 located at north limb of the Mushi anticline with the age of~16ka,which indicates the average shortening rate of south limb of the anticline in late Quaternary is~4.5mm/a.
Based on the interpretation of satellite images,combined with field geomorphic and tectonic investigations and surveys,we get the parameters of surface rupture zones of the 1895 Tashkorgan earthquake,such as the geometry,the types of rupture,the displacements and their distribution and so on.And on these grounds,we estimate the possible magnitude,the epicenter and seismogenic fault of this earthquake.The south segment of Muztag Fault and the whole Taheman Fault were ruptured by the Tashkorgan earthquake.The length of the surface rupture zone is 27km.The rupture zone strikes NNE,and it changes from N25°W in the north to N25°E in the south segment.The surface rupture zone is composed of consequent or obsequent normal fault scarps,represented by horst,graben,and step-like structure on the profile,and distributed in patterns as en echelon,parallel,convergent and parallel cross shaped and so on in the plane.The surface ruptures are dominated by pure dip-slip,with little lateral displacement.The general width of these overlapping surficial fault rupture strands is ca.30~60m, and the largest may come to 825m.The largest co-seismic displacement of a single scarp is 4.2±0.2m. The surface ruptures are composed of three independent secondary segments.The seismogenic fault of this earthquake is Taheman Fault.The south segment of Muztag Fault was also ruptured.Moreover,we find a younger fault scarp which may be induced by the 1895 earthquake in the small basin between the two above-mentioned faults.
The northern margin of the Pamir salient indented northward by ~300km during the late Cenozoic,however,the spatiotemporal evolution of this process is still poorly constrained.Regional deformation within the Pamir salient is asymmetric.Previous work has shown that deformation along the western flank of the Pamir was accommodated by northwest-directed radial thrusting and associated anticlockwise vertical axis rotation of the Pamir over the eastern margin of the Tajik Basin,along with a component of left-slip faulting along the Darvaz Fault.In contrast,subduction of the Tajik-Tarim Basin beneath the Pamir along the MPT was absorbed along the eastern margin of the salient by dextral-slip along the Kashgar-Yecheng transfer system,accompanied with Oligocene-Miocene northward underthrusting, thickening and widespread melting of the middle and lower crust beneath the Pamir,eventually led to east-west extension along the Kongur Shan extensional system at ~7~8Ma.The slip rate of the KYTS decreased substantially from 11~15mm/a to 1.7~5.3mm/a since at least 3~5Ma,termination of slip along the northern segment of the Karakorum Fault occurred almost at the same time.Late Quaternary and present active deformation in the Pamir is dominated by east-west extension along the Kongur Shan extensional system and north-south contraction along the PFT and the Atux-Kashi fold belts in the southern margin of Tianshan.