Magnetotelluric(MT)three-dimensional inversion has the advantages of simple data preprocessing, the model is close to actual situation, and the inversion result is more reliable and stable. It is one of the most advanced research topics and would take the place of the dominant two-dimensional inversion definitely. With the improvement of computing capability of computers and the breakthrough in inversion methods, great progress was made in MT three-dimensional inversion in recent years, from the theoretical research and test of this method at the beginning to the current application to practical data interpretation. For the great computation amount of MT three-dimensional inversion, current MT three-dimensional inversion algorithm programs are all implemented in parallel way and it is recommended to do three-dimensional inversion calculations on supercomputing system to make better use of computing resources and improve the inversion efficiency.
Different from the MT three-dimensional inversion algorithm programs which have basically realized the utility function, the practical application of MT three-dimensional inversion is still in an early stage. Users should be familiar with the use of multiple software and fulfill the function manually with the help of the software as follows: generating the files required for the inversion program, connecting to the supercomputer to upload data, inputting the command to perform the inversion, etc. The process of manually connecting and operating calculations is the most primitive cloud computing. All processes need to be done manually, which would cause not only heavy workload and the complicated operation, but also the problems for the long-term effective preservation and management of complex inversion data.
To conquer this, we develop independently a three-dimensional magnetotelluric inversion cloud computing system, toPeak, using Delphi language. This paper introduces some main features of toPeak. To begin with, system design and analysis are carried out in combination with the current situation and system structure and functions are realized. The main idea is to realize a set of cloud computing system platform based on server-client(C/S), on the basis of perfect inversion data management, integrate the most advanced three-dimensional magnetotelluric inversion algorithm program in the cloud, and connect through the Internet to realize all the system functions of three-dimensional magnetotelluric inversion. Then, the different parts of toPeak are introduced separately, including design structures and designs. The server is deployed on the supercomputer system(supercomputing)to receive the data for inversion tasks, configure and manage the storage of the inversion result data. Combined with the Internet connection, the server and the Internet together constitute a computing cloud. The client is deployed on the users’ windows operating system, including Windows visual data integration processing software and Internet operation middleware. The client is designed on the basis of object-oriented programming ideas, with data as the core, using data engineering objects to encapsulate and store all MT data, process and interpret the results, realize data processing inversion and other operations around this data project, and display the process and results of these processing and inversion in graphics using visualization technology. Internet operation middleware connects the client and server based on the SSH protocol to realize data processing and inversion, transmission and command sending and receiving. Furthermore, the whole work flow of inversion using toPeak and parts of procedure of it are shown. At last, some inversion results from toPeak are displayed. toPeak has realized the full functions require for implementing three-dimensional inversion and can grid, process and select, inverse and explain the data. It is a good tool for the practical use of three-dimensional inversion.
Magnetotelluric(MT)is a method of detecting electrical structures. The natural field source signal is weak, and there are many factors that affect the impedance estimation results, such as dead band, near-field interference, and random noise, so it is difficult to obtain accurate electromagnetic response in strong interference area. The stable and reliable impedance estimation is the premise for the follow-up inversion and interpretation. In order to suppress noise and improve the accuracy of impedance estimation, researchers have proposed various new data processing methods. However, these data processing methods are not widely used due to insufficient stability and poor applicability. The classic remote-reference method and robust estimation method are still the most widely used methods. This paper analyzes the characteristics of the strong interference data and the applicable scope of various data processing methods, combined with the processing effect of the measured magnetotelluric data in the strong interference area in eastern China, and summarizes a set of data processing strategies suitable for the strong interference area.
The remote-reference method can effectively suppress coherent noise. It is essential in data processing in strong interference areas. Usually, the results will be improved after processing by remote reference. The remote-reference site should be selected at a place far enough away from the measuring point without interference.
Robust estimation can highlight high-coherence signals and suppress low-coherence signals. In the dead band, the coherence of the natural field signal is higher than that of the background noise signal, so the robust estimation processing can improve the data processing result of the dead band. The intensity and coherence of the long-lasting near-field interference signal is higher than that of the natural-field signal. The robust estimation process will treat the near-field interference as the desired signal and suppress the natural source signal. Therefore, data containing long-term strong near-field interference is not suitable for using robust estimation but non-robust estimation. For data that is not well processed by the two methods, we can try a combination of the two. By carefully selecting the power spectrum obtained by the two methods, it is possible to improve the processing result.
Increasing the number of data segments can provide more sets of power spectra for selection, and also increase the probability of obtaining higher quality power spectra. Through careful selection of multiple power spectra, it is more likely to obtain better processing results than when the number of segments is smaller.
During the day when there is a lot of human activity, the interference signal is strong. And at night, the interference signal is weak. The measured data well proves this point, so we should extend the acquisition time at night as much as possible, and the data processing should also focus on the night data.
In general, it is more likely to obtain better data with longer acquisition time. Research on synthetic data shows that the maximum valid period of magnetotelluric theoretical data is 1/8 of the data duration. The measured data results of Fengning Station also support this conclusion. The longer the data acquisition time is, the more effective power spectra can be obtained, and the more likely it is to select a better quality spectrum from them, and obtain a stable impedance estimation result. Therefore, the data collection time should be adjusted reasonably according to the interference situation during the observation to ensure the stability of the impedance estimation result.
Magnetotelluric data processing methods are not invariable, and different data processing methods should be adopted according to the actual situation. When the better data processing method is not yet mature, flexible application of existing method is the necessary means for magnetotelluric data processing.
The electromagnetic(EM)method using controlled-source extremely low-frequency(CSELF)waves is a new technology based on the large-power alternating electromagnetic field generated by an artificial procedure. The biggest advantage of this technology is that it has a long transmitting antenna(tens to hundreds of kilometers)and a large transmitting current(hundreds of amps)and can emit strong and stable electromagnetic waves, covering millions of square kilometers. It can be applied to earthquake monitoring, surveys for mineral resources and treatment of waste nuclear material as well as marine and land communication and detection to ionospheric structure in space. At present, domestic theoretical research on CSELF is not mature enough. This paper has carried out a more detailed study on the spatial propagation characteristics of the electromagnetic(EM)of controlled-source extremely low frequency(CSELF).
The large-power CSELF EM waves cover almost all sections of space which can be divided into near, far and waveguide zones according to their propagation characteristics. The propagation of electromagnetic waves in the near and far zone is mainly manifested as the distribution and induction of the conductive currents, and the displacement current and effects of the ionosphere and spheric structure of the Earth can be neglected. The propagation theory of CSELF EM wave is similar to CSAMT in the near and far zones, and it can be described by the theory of quasi-stable field which is analogous to that of the classical theory of EM sounding. In this paper, we collated and verified the field strength calculation formulas in the existing literature. While in the waveguide zone, EM waves appear mainly as the displacement current, and the displacement current and effects of the ionosphere and spheric structure of the Earth must also be considered. The electromagnetic field is mainly the radiation field, and it runs in a way completely different from what the classic theory describes. Using the achievements of communication technology for reference, this paper presents the approximate calculation formula of CSELF EM wave of the earth-air-ionosphere spherical cavity model. Based on the field strength calculation formulas of the three regions obtained above, this paper has designed a piece of visualized software for calculation of the CSELF EM field in three coordinate systems(Cartesian, cylindrical and spherical coordinates). Finally, according to the calculation results, the spatial propagation characteristics of CSELF in the near area, far area and waveguide area are analyzed.
The results show that the decay of CSELF EM field intensity is rapid in the near and far zone, but slightly slow in the far zone, which reflects the spatial distribution characteristics of the induced field in the lossy medium and the radiation field in the dielectric medium. The electric field enters the waveguide zone earlier than the magnetic field. Under the earth model, there is an increase in the field strength in the waveguide area near the antipole of the dipole source which shows completely different EM waves propagation characteristics in horizontal formation model. According to the calculation results of the CSELF EM field in near and far zones under the three coordinate systems, it is found that in the Cartesian coordinate system, the horizontal components have two zero lines and are distributed in four quadrants. While the vertical component field has only one zero line and are distributed in two half planes. In the cylindrical and spherical coordinate systems, all field components have merely one zero line and are characterized by half-plane distribution. The location of the zero line should be avoided as much as possible in the layout of field observation stations. We can choose different coordinate systems to solve this problem. In addition, it is also recognized that in the frequency domain EM sounding based on the horizontal electric dipole source, the far-field sounding mainly depends on the magnetic field rather than the electric field. Furthermore, it is recognized that in the frequency domain electromagnetic sounding method based on the horizontal electric dipole, the horizontal component of the electric field in the near zone is proportional to the resistivity of the medium, and has nothing to do with the frequency; the vertical component is proportional to the frequency and has nothing to do with the dielectric resistivity; the magnetic field has no relationship with the frequency and the dielectric conductivity. In the far zone, the horizontal component of the electric field is basically independent of frequency, and the vertical component of the electric field is related to both frequency and earth conductivity. However, due to the difficulty of observation, it is generally not used in the actual sounding. The three components of magnetic field in the far zone are all related to the frequency and the earth’s conductivity, so the far-field sounding mainly depends on the magnetic field rather than the electric field.
Since CSELF antennas are generally very long(tens to hundreds of kilometers), the antenna can no longer be regarded as an electric dipole when measuring in the near and far zones, but should be regarded as a long wire source composed of multiple electric dipoles. In this paper, the electric dipole theory is still used for analysis, which has certain limitations that need to be overcome by further in-depth research.
The first control source extremely low frequency(CSELF)electromagnetic observation network through the world, consisting of 30 fixed stations located in the Beijing captical circle region(15 staions)and the sourthern secton of the north-south earthquake belt(15 stations), China, has been established under the support of the wireless electromagnetic method(WEM)project, one of the national science and technology infrastructure construction projects during the 11th Five-year Plan period. As a subsystem of the WEM project, the CSELF network is mainly to study the relationship between elctromagnetic anomalies and mechanisms of earthquake, and further improve our ability to monitor and predict earthquakes by monitoring real-time dynamic changes in both electromagnetic fields and subsurface electric structure. Carrying out the detection of the underground background electric structure in the CSELF network area/station is an important part of this project and of great significance to play its role in the study of earthquake prediction and forecast. In this paper, we elaborate how to acquire the subsurface electric structure of the CSELF network in the Beijing captical circle region and make a simple explanation for the structure. Firstly, a short magnetotelluric(MT)profile, almostly perpendicular to the regional geological strike, was deployed at each station of the CSELF network in the capital circle region during the 2016 and a total of 60 broadband MT sites was collected using ADU -07e systems. Then, all the time series data were processed carefully using the robust method with remote reference technique to MT transfer functions. MT data quality was assessed using the D+algorithm. In general, data at most sites are of high quality as shown by the good consistency in the apparent resistivity and phase curves. Different impedance tensor decomposition methods including the phase tensor analysis, Groom and Bailey(GB)tensor decompositon, and statistical image method based on multi-site, multi-frequency tensor decompositon were used to analyze data dimensionality and directionality. For data inversion, on the one hand, one-dimensional(1-D)subsurface electrical resistivity structures at each station and MT site were derived from 1-D adaptive regularized MT inversion algorithm. On the other hand, we also imaged the 2-D electric structures along the short MT profile by the nonlinear conjugate gradients inversion algorithm at each station. Robustness of all 2-D structures along each short profile were verified by sensitivity tests. Although fixed stations and MT sites are limited and distributed unevenly, the 3-D inversion of 15 stations was also performed to produce a 3-D crustal electrical resistivity model for the entire network using the modular system for 3-D MT inverson: ModEM based on the nonlinear conjugate gradients algorithem. Intergrating 1-D, 2-D and 3-D inversion results, the resistivity structure beneath the CSELF network in captical circle region revealed some significant features: The crustal electrical structures are mainly characterized by high resistivity beneath the Yinshan-Yanshan orogenic belt in the northern margin of North China, the Taihangshan area in the middle, the Jiao-Liao block in the east, while the North China Plain and Shanxi depression areas have relatively lower resistivity in the crust; There are obvious electrical resistivity difference on both sides of the gravity gradient of Taihang Mountains and the Tanlu fault zone, which indicates they could be manifested as an electric structure boundary zone, respectively. Overall, the electric structure characteristics of the entire network area shows high correspondence with the regional geological structure and earthquake activity to some extent. In summary, implementing the detection of underground electrical resistivity structure in the CSELF network of the capital circle region will provide important foundations for the researches on the regional seismogenic environment, the generation mechanism of seismic electromagnetic anomaly signals, and earthquake prediction and forecast.
The East Kunlun Fault is a giant fault in northern Tibetan, extending eastward and a boundary between the Songpan-Ganzi block and the West Qinling orogenic zone. The East Kunlun Fault branches out into a horsetail structure which is formed by several branch faults. The 2017 Jiuzhaigou MS7.0 earthquake occurred in the horsetail structure of the East Kunlun Fault and caused huge casualties. As one of several major faults that regulate the expansion of the Tibetan plateau, the complexity of the deep extension geometry of the East Kunlun Fault has also attracted a large number of geophysical exploration studies in this area, but only a few are across the Jiuzhaigou earthquake region. Changes in pressure or slip caused by the fluid can cause changes in fault activity. The presence of fluid can cause the conductivity of the rock mass inside the fault zone to increase significantly. MT method is the most sensitive geophysical method to reflect the conductivity of the rock mass. Thus MT is often used to study the segmented structure of active fault zones. In recent years MT exploration has been carried out in several earthquake regions and the results suggest that the location of main shock and aftershocks are controlled by the resistivity structure. In order to study the deep extension characteristics of the East Kunlun Fault and the distribution of the medium properties within the fault zone, we carried out a MT exploration study across the Tazang section of the East Kunlun Fault in 2016. The profile in this study crosses the Jiuzhaigou earthquake region. Other two MT profiles that cross the Maqu section of East Kunlun Fault performed by previous researches are also collected. Phase tensor decomposition is used in this paper to analyze the dimensionality and the change in resistivity with depth. The structure of Songpan-Ganzi block is simple from deep to shallow. The structure of West Qinlin orogenic zone is complex in the east and simple in the west. The structure near the East Kunlun Fault is complex. We use 3D inversion to image the three MT profiles and obtained 3D electrical structure along three profiles. The root-mean-square misfit of inversions is 2.60 and 2.70. Our results reveal that in the tightened northwest part of the horsetail structure, the East Kunlun Fault, the Bailongjiang Fault, and the Guanggaishan-Dieshan Fault are electrical boundaries that dip to the southwest. The three faults combine in the mid-lower crust to form a “flower structure”that expands from south to north. In the southeastward spreading part of the horsetail structure, the north section of the Huya Fault is an electrical boundary that extends deep. The Tazang Fault has obvious smaller scale than the Huya Fault. The Minjiang Fault is an electrical boundary in the upper crust. The Huya Fault and the Tazang Fault form a one-side flower structure. The Bailongjiang and the Guanggaishan-Dieshan Fault form a “flower structure”that expands from south to north too. The two “flower structures”combine in the high conductivity layer of mid-lower crust. In Songpan-Ganzi block, there is a three-layer structure where the second layer is a high conductivity layer. In the West Qinling orogenic zone, there is a similar structure with the Songpan-Ganzi block, but the high conductivity layer in the West Qinling orogenic zone is shallower than the high conductivity layer in the Songpan-Ganzi block. The hypocenter of 2017 MS7.0 Jiuzhaigou earthquake is between the high and low resistivity bodies at the shallow northeastern boundary of the high conductivity layer. The low resistivity body is prone to move and deform. The high resistivity body blocked the movement of low resistivity body. Such a structure and the movement mode cause the uplift near the East Kunlun Fault. The electrical structure and rheological structure of Jiuzhaigou earthquake region suggest that the focal depth of the earthquake is less than 11km. The Huya Fault extends deeper than the Tazang Fault. The seismogenic fault of the 2017 Jiuzhaigou earthquake is the Huya Fault. The high conductivity layer is deep in the southwest and shallow in the northeast, which indicates that the northeast movement of Tibetan plateau is the cause of the 2017 Jiuzhaigou earthquake.
In this paper,we propose a method of seismic prediction using the geo-electric resistivity shifting self-correlation (SSC),and a numerical test is carried out using random time series analysis to verify the validity of the method.The SSC method is applied to the actual observation data of three geo-electric resistivity stations,and results are obtained as follows:(1) SSC coefficient changes in Ganzi and Shandan stations have good correspondence to earthquake,which is represented mainly by the phased increase of correlation coefficient appearing six months to a year before the earthquake.At the same time,the correlation coefficient anomalies of the two stations also exhibit strong anisotropy.(2) Although Chengdu geo-electric resistivity station had suffered serious disturbance,the correlation coefficient anomaly also has a good correspondence with earthquake.In addition to the validity of the SSC method,it may also be attributed to the magnitude of the earthquake event,the smaller distance of epicenter,and the time of the earthquake.Anisotropy also exists in the anomaly at Chengdu station.(3) By comparing the characteristics of different magnitudes of earthquakes,the results are obtained that,when the magnitude of the selected characteristic earthquake is relatively small,the amplitude of the anomaly before earthquake is different,but when the magnitude is larger,for example MS ≥ 5.0,the impact on the results of this study is very limited.In addition,we briefly discussed the anisotropy of seismic geoelectrical resistivity anomalies and the selection of the characteristic earthquake.
Magnetotelluric data are collected along a NW-SE trending and about 900km long profile within northeastern boundary areas of the North China craton(NCC). This profile extends from the Hegenshan belt within the Central Asian orogenic belt(CAOB), across the Baolidao arc, Solonker-Linxi suture zone, Ondor Sum accretion complex, Bainaimiao arc, Inner Mongolia paleo-uplift, Yanshan belt, and ends on the Liaohe depression of the NCC. Impedance tensor decomposition methods are used to study the dimensionality and geo-electric strike of MT data of the region. Two-dimension (2D) analysis is appropriate for this profile. The 2-D subsurface electrical resistivity structure along profile is obtained using the non-linear conjugate gradient (NLCG) algorithm. The electrical resistivity structure is characterized by lateral segmentation, and divided into high resistive, low resistive, and high resistive areas; The lateral variation of electrical resistivity is significant within the CAOB, but it is smooth in the NCC; The extensive high conductive body(HRB)is observed in the mid-low crust beneath the Solonker-Linxi suture zone and Inner Mongolia paleo-uplift, respectively; The low resistivity could be due to the partial melts and crustal flows. Based on our electrical resistivity structure and other geological, geophysical observations, we speculate that (1)the final suturing of the Siberian craton to the NCC could be along the areas between Xilinhot Fault and Xar Moron Fault; (2)the relatively thick high resistive body beneath the Yanshan belt may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection system, and lower the effect of tectonic evolution of CAOB on the destruction to NCC.
With the growing number of observational data, increasingly complex geoelectric model, and high-dimensional magnetotelluric method, the efficient and stable forward and inversion technologies become more and more required. Multigrid method enables the asymptotically optimal approximate numerical solution to elliptic partial differential equations including the MT 2D forward modeling problem. Currently, the coarsening and refining operations are based on regular grid which is easy to understand and implement. However, when the geometry of a region is complex or the region needs local refinements, regular grid becomes not well applicable. Unstructured triangular grid has better geometrical adaptability than structured grid. The Delaunay triangulation ensures that each triangle is generated to be Delaunay. This property is particularly suitable for numerical interpolation and FEM calculation. Besides, the Delaunay triangulation has a strong mathematical theory foundation which makes it very convenient for local refinement and sparseness. The key to solve the complicated geoelectric model using multigrid method is the automatic generation of unstructured multi-level grids. In this paper, we present an algorithm for generating unstructured grid for Multigrid method based on Delaunay triangulation. The algorithm will automatically generate the coarse and fine grid for complex input region, and all the triangle elements abide by the Delaunay criteria which ensure numerical accuracy and high convergence rate.
On July 22, 2013, an MS6.6 earthquake occurred at the junction of Minxian and Zhangxian. After the earthquake, magnetotelluric(MT)measurement was carried out at 45 sites along the NE-oriented profile across the West Qinling orogen(the west segment)and the earthquake area. Remote reference, "robust", and phase tensor decomposition techniques were used to process the MT data, and the NLCG two-dimensional inversion method was adopted to get the deep electrical structures. The deep electrical structure images indicate that there exists an inverted trapezoidal high-resistivity layer in the West Qinling orogenic belt(west segment)at the depth from the surface to about 20km deep, which is shallow in the northeast and southwest and deep in the middle. Under the high-resistivity layer is a low-resistivity layer, and they conjoin each other. There is a low-resistivity layer in the Songpan-Ganzi block(north part)at the southwest side of West Qinling orogenic belt(west segment)under the depth of 20km in the lower crust, which is shallow in the northeast and deep in the southwest, and the Longxi Basin at its northeast has a stable layered structure, suggesting that West Qinling orogenic belt(west segment)is being subject to the northward extrusion of the Songpan-Ganzi block and southward resistance of the Longxi Basin. The East Kunlun Fault(Tazang segment)faulted the low-resistivity layer in the lower crust of Songpan-Ganzi block. The Diebu-Bailongjiang Fault and Guangaishan-Dieshan Fault zone extend to a shallow depth and merge into the East Kunlun Fault(Tazang segment)in the deep part. The characteristic of low-resistivity of the media in the deep-seated structures in the East Kunlun Fault(Tazang segment)is the underlying cause for the gradual decrease of horizontal slip rate and gradual increase of vertical movement of the Tazang segment. The West Qinling Fault is a main geoelectric boundary zone, which extends through the Moho; Lintan-Tanchang Fault zone behaves as a low-resistivity layer with a certain width, which extends into the low-resistivity layer in the mid to lower crust. The source region of Minxian-Zhangxian MS6.6 earthquake locates in the core of inverted "trapezoid" of the low-resistivity layer in the West Qinling orogenic belt(west segment), that is, in the contact area between the high to low resistivity layers, and also in the low-resistivity fractured zone near the Lintan-Tanchang Fault. The interaction of southwest-northeast pushing from Songpan-Ganzi block and resistance of Longxi Basin block at its northeast is external dynamics of the Minxian-Zhangxian MS6.6 earthquake, and the high- and low-resistivity medium property and their contact relation in the seismic source region of the earthquake are the internal factor to generate this earthquake.
The electrical conductivity of biotite-plagioclase gneiss was investigated at pressure of 1GPa and temperatures from 400 to 1073K by impedance spectroscopy within a frequency range of 10-1 to 106Hz. The electrical conductivity of the samples increases with increasing temperature, which can be described approximately as the Arrhenius equation. The logarithm of electrical conductivity varies from -6 to -0.5S/m at the range of 400 to 1073K. The measurement results reveal that the conductivities of samples with different orientations differ by an order of magnitude at the same temperature. The electrical conductivity parallel to foliation shows abrupt change in the temperature range of 881~1040K in the third heating and cooling cycle, which may be associated with the dehydration of biotite. The calculated activation enthalpies are 0.49eV(parallel to foliation)and 0.43eV(perpendicular to foliation)for low temperatures and 1.53eV(parallel)and 3.40eV (perpendicular)for high temperatures, respectively. The experiment results are compared with the magnetotelluric observations of the middle and lower crust in East China, our model is consistent with the electrical conductivity structures derived from geophysical observations. Our results indicate that the biotite-plagioclase gneiss may be one of the candidate rocks in this region.
Control Source Extremely Low Frequency(CSELF)electromagnetic technique is a new technique used in the earthquake monitoring. The signals transmitted by powerful generator propagate in "conductance" and cover the regions distant to thousands of kilometers. The signal frequency band contains the ELF and adjacent frequencies which were not used in earthquake monitoring by previous electric and magnetic observations and were understood for their sensitivity to the electromagnetic anomaly relative to events. The CSELF can monitor both the space electromagnetic fields and the sub-surface resistivity structures with their variations,which is favorable for four-dimensional monitoring. In the past experiments,the electromagnetic anomalies before shocks were measured twice. The experimental observation using observatory network-like stations shown that the data of artificial signals are quite stable and have high S/N ratio. A new observatory network with a certain scale is building for earthquake monitoring.
The Daixian Basin,a typical asymmetric half-graben basin,lies in the northern Shanxi Fault zone.It is bounded by the northeast trending Wutaishan northern piedmont fault zone and Hengshan southern piedmont fault zone.To investigate the shallow electric structures beneath this basin and the boundary faults,a CSAMT profile was applied which runs northwesterly through the basin.CSAMT data were recorded at 246 locations along the 12.55km-long profile.At each location data were recorded from 8533.333 to 1.333333Hz and processed to give estimates of apparent resistivity and phase.The profile is through the Wutaishan Fault in the southeast and arrives at the Hengshan piedmont loess hilly region in the northwest.Some data are of low signal-to-noise ratio due to ractive noises from power lines,pipelines,railways,highways and power substations.But useful data can be acquired 200meters away from the interference sources.The curves of apparent resistivity and phase have an obvious segmentation character.The shape of the curve of each section is consistent to the adjacent section and the segmentation shows good correlation with geomorphologic features.NLCG inversion was performed on the CSAMT data along this profile to reveal the electric structure within the depth of 1km from the surface in the basin.The result shows that the Wutaishan northern piedmont fault zone consists of a set of north-dipping normal faults which decline down stepwise,verging toward the Daixian Basin.Because the CSAMT profile does not run through the whole Hengshan southern piedmont fault zone,only partial features of it are revealed,i.e.the southeast-dipping high-resistivity foot wall bedrock and low-resistivity hanging wall alluvial deposits are underlain by thin-bed low-resistivity flood deposits.Besides,it is found that the Daixian Basin is laterally inhomogeneous,corresponding to its topography,where the tilting alluvial-flood plain is underlain by low-resistivity layer and the resistivity below the alluvial plain is slightly higher.The application of CSAMT to the Daixian Basin indicates that this method can be used to determine the location,dip and size of faults,and provide reliable basic data for survey of active faults.
The EM measurement of earthquake monitoring for MS 6.4 Ning'er aftershock series has been done at a continuous observation site after the earthquake on June 3,2007.The data was observed for 14 days.Very strong coseismic signals of aftershocks were found in the magnetic and electric fields' time series data.Electric and magnetic auto power spectrums have been obtained by using FFT in the bihourly data.The spectrum variations for the same frequency were compared.It was found that the peak of all components bounced before and after earthquakes of MS≥3.0.This phenomenon may be corresponding to the coseismic signal and the electromagnetic precursor before and after the earthquake.We also discussed the mechanism in the paper and the seismo-dynamo effect seems to be a plausible mechanism.