Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
PRELIMINARY STUDY ON FAULTED LANDFORMS AND AGES OF RECENT STRONG EARTHQUAKE ACTIVITY ON THE KARAKORUM FAULT IN NGARI, TIBET
XU Wei, LIU Zhi-cheng, WANG Ji, GAO Zhan-wu, YIN Jin-hui
SEISMOLOGY AND GEOLOGY    2022, 44 (4): 925-943.   DOI: 10.3969/j.issn.0253-4967.2022.04.007
Abstract668)   HTML35)    PDF(pc) (14700KB)(319)       Save

The Karakoram Fault is located in the west of the Qinghai-Tibet Plateau and crosses Kashmir, Xinjiang and Tibet in China. It is a large normal dextral strike-slip fault in the middle of the Asian continent. As a boundary fault dividing the Qinghai-Tibet Plateau and the Pamir Plateau-Karakoram Mountains, the Karakoram Fault plays a role in accommodating the collision deformation between the Indian plate and the Eurasian plate and in the tectonic evolution of the western Qinghai-Tibet Plateau. The fault trace in Ngari area is clear and the faulted landforms are obvious, which show strong activity characteristics in late Quaternary. As a large active fault, only one earthquake of magnitude 7 has been recorded on the Karakoram Fault since the recorded history, namely, the Tashkurgan earthquake of 1895 at its north end. There are no records of strong earthquakes of magnitude≥7 along the rest of the fault, and no paleo-seismic research has been carried out. Ages of recent strong earthquake activity and earthquake recurrence intervals are not clear, which greatly limit the accuracy of seismic risk assessment. In this study, we investigated the fault geometry and faulted landforms in Ngari area, collected OSL samples of the faulted landforms and sag ponds in Zhaxigang, Menshi and Baga towns and preliminarily discussed the ages of recent strong earthquake activity.

Study shows that the fault can be divided into three sections by Zhaxigang town and Suoduo village, and the structure and properties of each section are significantly different. In west Zhaxigang town section, the fault is dominated by dextral strike-slip with certain vertical movement, it is almost straight on the surface, with river terraces, alluvial-proluvial fans and water system faulted ranging from tens to hundreds of meters. In Zhaxigang town to Suoduo village section, the normal faulting is remarkable, the main fault constitutes the boundary fault between Ayilari Mountain and Gar Basin; fault facets and fault scarps are common along the fault line, there are also secondary faults with the same or opposite dip as the main fault developed near the piedmont basin. In east Suoduo village section, the main part of the fault is located at the south foot of Gangdise Mountain, and in addition to the piedmont fault, several approximately parallel faults are also developed on the southern alluvial-proluvial fans and moraine fans which are mainly dextrally faulted with certain vertical component.

According to the analysis of the faulted landforms and dating of the OSL samples collected from the sag ponds and faulted landforms in the west of Zhaxigang town, the east of Menshi town and the east of Baga town, the ages of recent strong earthquake activity on the fault are analyzed as follows. In the west of Zhaxigang town, the age of recent strong earthquake activity of the fault is constrained to be close to 2.34kaBP according to the average OSL dating results of KKF-3 and KKF-4. In the east of Menshi town, the recent earthquake activity age of fault f2 is 4.67~3.01kaBP, but closer to 3.01kaBP according to the OSL dating results of KKF-11 of the youngest faulted geomorphic surface and average OSL dating results of KKF-6 and KKF-13 collected from sag ponds. In the area near Angwang village, Baga town, it is inferred that the recent strong earthquake activity age of the fault is close to 2.54kaBP according to the OSL dating results of KKF-2 collected from sag pond. If the faults of above three places are active at the same time, the age of recent strong earthquake activity of the fault is close to 2.63kaBP. The Karakorum Fault in Ngari area has obvious segment boundaries, and the activity of each segment and in its internal branch faults is most likely to be independent.

The earthquake recurrence interval on the fault is estimated to be 2.8ka according to the slip rate and the amount of displacement. From the above analysis, it can be seen the time since the last strong earthquake activity of Karakorum Fault may have been very close to the interval of earthquake recurrence. If the fault is characterized by a quasi-periodic in-situ recurrence, the energy accumulation in the fault may have reached a very high degree and the risk of recurrence of strong earthquake events of the fault may be very high, so more attention should be paid and more detailed research on the paleo-earthquake events and recurrence intervals should be carried out as quickly as possible.

Table and Figures | Reference | Related Articles | Metrics
STUDY ON TANGSHAN-HEJIAN-CIXIAN EARTHQUAKE FAULT ZONE BY SHALLOW SEISMIC EXPLORATION METHOD
WANG Ji, GAO Zhan-wu, LIU Fang-xiao, WANG Wan-he, ZHAO Guo-cun, XU Wei
SEISMOLOGY AND GEOLOGY    2020, 42 (4): 866-880.   DOI: 10.3969/j.issn.0253-4967.2020.04.006
Abstract1311)   HTML    PDF(pc) (7222KB)(281)       Save
The location of the buried faults, the fault broken layers and the depth of breakpoints in the Tangshan-Hejian-Cixian seismotectonic zone are not clear. We implemented 4 shallow seismic exploration profiles on the Daming Fault, Cangxi Fault, and Dachengdong Fault. Line DZ1 is located on the Daming Fault in the southeast of Daming County. Five breakpoints were dectectd, which are all normal faults, with depths of 95~125m and displacements about 6~12m, offsetting late Pleistocene but not the Holocene. Line DZ2 is located in the east of Xianxian County to dectect the Cangxi Fault. Three breakpoints were detected, all are normal faults, with depths of 170~190m and displacements about 7~10m. The upper breakpoints of the three faults cut the middle Pleistocene. The lines DZ3 and DZ4 are located in the west of Litan Town, Dacheng County. Four breakpoints were detected, with the upper breakpoint depth of 120~130m and displacements about 5~15m. They are all normal faults, and the upper breakpoints of the faults cut the Pleistocene strata.
The result of the exploration of Cixian-Daming Fault is not consistent with the buried depth 1 200m proposed by XU Hua-ming. It is proved that the activity of the fault is also consistent with the overall activity of the Cixian-Daming Fault, which is an active fault since late Pleistocene.
The Dachengdong Fault and Cangxi Fault offset the middle Pleistocene strata. Although the late Pleistocene active faults are generally defined as active faults in the practice of active tectonics research in China, strong earthquakes in eastern China have shorter recurrence period, and earthquakes of magnitude 6 or so may also occur in some middle Pleistocene active faults.
During the compilation of GB18306-2015 “Seismic ground motion parameter zonation map of China”, there were no late Pleistocene active faults in the M6~6.5 potential source areas in eastern China. Therefore, we believe that the Dachengdong and Cangxi faults still have the ability to generate earthquake of magnitude 6 or so, and the faults have some similarities with the seismogenic structures of Xingtai earthquake swarm. Under the action of the latest tectonic stress field, the “deep faults” tearing ruptured successively and expanded upwards, resulting in stress migration and loading between two neighbouring en-echolon concealed faults, so, the Dachengdong and Cangxi faults are the product of this three-dimensional rupture process. The Dachengdong Fault is a “newly-generated” fault resulting from the tearing rupturing and upward expanding of the pre-existing concealed “deept faults” in the middle and lower curst.
Reference | Related Articles | Metrics
TECTONIC CHARACTERISTICS OF BAOTOU UPLIFT IN HETAO DEPRESSION ZONE
LIU Zhi-cheng, GAO Zhan-wu, XU Wei, WANG Ji, WANG Wan-he, WANG Wan-he
SEISMOLOGY AND GEOLOGY    2019, 41 (5): 1105-1122.   DOI: 10.3969/j.issn.0253-4967.2019.05.003
Abstract544)   HTML    PDF(pc) (9802KB)(171)       Save
The Hetao depression zone, located to the north of Ordos block, is a complex depression basin that consists of two sub-uplifts and three sub-depressions. The depression zone is subject to the regional extensional stress field driven by the Indo-Asian continental collision and the westward subduction of the Pacific Plate. The Baotou uplift that separates the Baiyanhua sub-depression and Huhe sub-depression is mainly composed of Archean gneiss and is overlaid by Quaternary sedimentary strata. The two sub-depressions are bordered by the Wula Mountains and Daqing Mountains to the north, respectively. The bedrock exhumed in Wula Mountains and Daqing Mountains consists mostly of Precambrian granitic gneiss, and the piedmont depressions are infilled by thick Cenozoic strata. The Wulashan piedmont fault and Daqingshan piedmont fault extend along the range front of Wula Mountains and Daqing Mountains, respectively. The subsidence is controlled by the two boundary faults. Previous studies have preliminarily documented the characteristics of the northwest boundary fault of Baotou uplift. Combining shallow seismic exploration, active fault mapping, and geological drilling, this paper presents a detailed study on the tectonic characteristics of the Baotou uplift.
The shallow seismic exploration reveals that the Baotou uplift is an asymmetrical wedge with a steep southeast wing and a gentle dipping northwest wing. The Baotou uplift is wider in the northeastern part and narrows down towards the southwest. In seismic profiles, the Baiyanhua sub-depression and the Huhe sub-depression manifest as asymmetric dustpan-like depressions with south-dipping controlling faults. Baotou uplift is bounded by the Xishawan-Xingsheng Fault to the northwest and Daqingshan piedmont fault to the southeast. The two faults exhibit significant difference in many aspects, such as fault geometry, fault displacement, the latest active time, and so on. The southeast boundary fault of Baotou uplift is the Baotou section of the Daqingshan piedmont fault which is a Holocene active fault and the major boundary fault of Huhe sub-depression. East of Wanshuiquan, the fault strikes EW-NEE; west of Wanshuiquan, the strike changes to NW. The Daqingshan piedmont fault appears as a south-dipping listric fault in seismic profiles whose dip decreases with depth and cuts through all the sedimentary strata in Huhe sub-depression; the fault extends along the late Pleistocene lacustrine platform at surface with prominent geomorphological evidences. The Xishawan-Xingsheng Fault is a buried high-angle normal fault that mainly dips to the northwest and strikes NE. The fault strike changes to NNE at the eastern tip. Based on the results of seismic exploration and geological drilling, the Xishawan-Xingsheng buried fault is an early to middle Pleistocene Fault capped by late Pleistocene lacustrine strata. We reckon that the Xishawan-Xingsheng Fault is one of the synthetic faults that dip towards the main boundary fault of Baiyanhua sub-depression.
Similarities in lithology, geometry, and structural characteristics of south boundary faults all indicate that Baotou uplift is the western extension of Daqing Mountains. Multiple factors may contribute to the formation of Baotou uplift, such as tectonic subsidence and the development of large-scale river system and mega-lake. We suggest that the upwelling of asthenosphere may play a primary role in the evolution of Wulanshan piedmont fault and Daqingshan piedmont fault. Separated by the Baotou uplift, the Wulashan piedmont fault and Daqingshan piedmont fault can be regarded as independent seismogenic faults. The Hetao depression zone is featured by complex inner structures, and many scientific issues are subject to further researches. Thus, more attention should be paid to the secondary structures within the depression zone for a better understanding on the formation and evolution of Hetao depression zone.
Reference | Related Articles | Metrics
RIVER GEOMORPHIC PARAMETERS OF THE HUASHAN PIEDMONT AND THEIR TECTONIC IMPLICATIONS
XU Wei, LIU Zhi-cheng, YUAN Zhao-de, GAO Zhan-wu, YANG Yuan-yuan
SEISMOLOGY AND GEOLOGY    2017, 39 (6): 1316-1335.   DOI: 10.3969/j.issn.0253-4967.2017.06.015
Abstract1176)   HTML    PDF(pc) (8831KB)(348)       Save
Based on DEM data and ArcGIS software, we extract the geomorphic parameters of drainage basins and rivers that flow through the Huashan piedmont, which include stream length-gradient index (SL), stream-power incision model normalized channel steepness index (ksn), hypsometric integral (HI), valley floor width to valley height ratio (Vf)and mountain front sinuosity (Smf). Study shows that all parameter indexes have obviously different distributions roughly bounded by Huaxian and Huayin. In the Huaxian to Huayin section, the stream length-gradient index has extremely high abnormal values near the fault, the values of river mean SL, mean ksn, HI, Vf and Smf are concentrated in 500~700, 120~140, 0.5~0.6, 0~0.1 and 1.0~1.1, respectively. Between Lantian and Huaxian and between Huayin and Lingbao, the parameter indexes distributional characteristics are largely the same, with the values in 300~500, 100~120, 0.4~0.5, 0.2~0.6 and 1.2~1.5, respectively. Comprehensive analysis suggests that tectonic activity is the primary factor responsible for these differences. We divide each geomorphic parameter into three classes (strong, medium, and low)and calculate the relative active tectonics (Iat)of the Huashan piedmont. The results show that the Iat values in Huaxian to Huayin section are in 1.0~1.5, those at other places are in 1.5~3.0, indicating that the tectonic activity from Huaxian to Huayin is most intense, while that of other places are relatively weak. Field geological investigations show that the Huashan piedmont fault can be divided into Lantian to Huaxian section, Huaxian to Huayin section and Huayin to Lingbao section. In Huaxian to Huayin section the fault has been active several times since Holocene indicative of strongest activity, while in Lantian to Huaxian section and Huayin to Lingbao section the fault was active only in the late Pleistocene and its activity was weaker as a whole. Tectonic activity of the Huashan piedmont derived from river geomorphic parameters is consistent with field geological investigations, indicating that geomorphic parameters of rivers can be used to characterize activity of faults on a regional scale.
Reference | Related Articles | Metrics
LATE QUATERNARY FAULTED LANDFORMS AND FAULT ACTIVITY OF THE HUASHAN PIEDMONT FAULT
XU Wei, YANG Yuan-yuan, YUAN Zhao-de, LIU Zhi-cheng, GAO Zhan-wu
SEISMOLOGY AND GEOLOGY    2017, 39 (3): 587-604.   DOI: 10.3969/j.issn.0253-4967.2017.03.011
Abstract1336)   HTML    PDF(pc) (8417KB)(462)       Save
Based on the 1︰50000 active fault geological mapping, combining with high-precision remote imaging, field geological investigation and dating technique, the paper investigates the stratum, topography and faulted landforms of the Huashan Piedmont Fault. Research shows that the Huashan Piedmont Fault can be divided into Lantian to Huaxian section (the west section), Huaxian to Huayin section (the middle section) and Huayin to Lingbao section (the east section) according to the respective different fault activity.
The fault in Lantian to Huaxian section is mainly contacted by loess and bedrock. Bedrock fault plane has already become unsmooth and mirror surfaces or striations can not be seen due to the erosion of running water and wind. 10~20m high fault scarps can be seen ahead of mountain in the north section near Mayu gully and Qiaoyu gully, and we can see Malan loess faulted profiles in some gully walls. In this section terraces are mainly composed of T1 and T2 which formed in the early stage of Holocene and late Pleistocene respectively. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These indicate that in this section the fault has been active in the late Pleistocene and its activity becomes weaker or no longer active after that.
In the section between Huaxian and Huayin, neotectonics is very obvious, fault triangular facets are clearly visible and fault scarps are in linear distribution. Terrace T1, T2 and T3 develop well on both sides of most gullies. Dating data shows that T1 forms in 2~3ka BP, T2 forms in 6~7ka BP, and T3 forms in 60~70ka BP. All terraces are faulted in this section, combing with average ages and scarp heights of terraces, we calculate the average vertical slip rates during the period of T3 to T2, T2 to T1 and since the formation of T1, which are 0.4mm/a, 1.1mm/a and 1.6mm/a, and among them, 1.1mm/a can roughly represent as the average vertical slip rate since the middle stage of Holocene. Fault has been active several times since the late period of late Pleistocene according to fault profiles, in addition, Tanyu west trench also reveals the dislocation of the culture layer of(0.31~0.27)a BP. 1~2m high scarps of floodplains which formed in(400~600)a BP can be seen at Shidiyu gully and Gouyu gully. In contrast with historical earthquake data, we consider that the faulted culture layer exposed by Tanyu west trench and the scarps of floodplains are the remains of Huanxian MS8½ earthquake.
The fault in Huayin to Lingbao section is also mainly contacted by loess and mountain bedrock. Malan loess faulted profiles can be seen at many river outlets of mountains. Terrace geomorphic feature is similar with that in the west section, T1 is covered by thin incompact Holocene sand loam, and T2 is covered by Malan loess. OSL dating shows that T2 formed in the early to middle stage of late Pleistocene. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These also indicate that in this section fault was active in the late Pleistocene and its activity becomes weaker or no longer active since Holocene.
According to this study combined with former researches, we incline to the view that the seismogenic structure of Huanxian MS8½ earthquake is the Huashan Piedmont Fault and the Northern Margin Fault of Weinan Loess, as for whether there are other faults or not awaits further study.
Reference | Related Articles | Metrics
RE-COGNITION OF THE NEOTECTONICS AND ACTIVITIES OF THE YINGKOU-WEIFANG FAULT ZONE
GAO Zhan-wu, XU Jie, ZHAO Tie-hu, ZHANG Jin, JI Feng-ju, ZHOU Ben-gang
SEISMOLOGY AND GEOLOGY    2017, 39 (1): 43-53.   DOI: 10.3969/j.issn.0253-4967.2017.01.003
Abstract979)      PDF(pc) (2478KB)(723)       Save

The Yingkou-Weifang fault zone (YWFZ) is the part of the Tanlu fault zone across the Bohai Sea, and is also an important part of the tectonics of the eastern Bohai Bay Basin. Many studies have been carried out on the neo-tectonics and activities of the YWFZ in recent years. In this paper, the neo-tectonics and activities of the YWFZ, and other related issues were studied again, based on our previous work and results of other researchers. The neo-tectonic movement in the Bohai Sea area began in the late Miocene (12~10Ma BP), which originated from the local crust horizontal movement, the tectonic stress field is characterized by NEE-SWW and near E-W horizontal compression. The neo-tectonics of the YWFZ is represented mainly by Neogene-Quaternary deformation, due to rejuvenation of Paleogene faults. Many faults have developed. The neo-tectonics and activities of YWFZ have characteristics of segmentation and weakening, because of the development of the NE-trending Northwest Miao Island-the Yellow River Estuary fault zone, which crosses the YWFZ. Earthquakes in the east of Bohai Sea are distributed along the Northwest Miao Island-the Yellow River Estuary fault zone, only few and small earthquakes along the Liaodong Bay and the Laizhou Bay section of the YWFZ. We made a preliminary analysis of the mechanics for this phenomenon.

Reference | Related Articles | Metrics
LATE QUATERNARY ACTIVITY RESEARCH OF THE NORTHERN MARGINAL FAULT OF EMEI PLATFORM, SHANXI PROVINCE
XU Wei, GAO Zhan-wu, YANG Yuan-yuan
SEISMOLOGY AND GEOLOGY    2014, 36 (4): 1064-1076.   DOI: 10.3969/j.issn.0253-4967.2014.04.011
Abstract647)      PDF(pc) (6189KB)(1096)       Save

Based on the 1: 50 000 geological mapping of active fault, the paper investigates the stratum, topography and faulted landforms of the northern marginal fault of Emei Platform, and preliminarily divides the northern marginal fault of Emei Platform into three sections by two stepovers near Tanjiazhuang Village and Nanliu Village according to different fault activity of each section.
At west of Tanjiazhuang Village is a loess platform, and the high terrain scarp can be seen from the northern margin. The height of scarp decreases progressively and the slope becomes gentle westwards at the place between Nanchi Village and Xikang Village, and to the place near Xiaoliang town, we cannot see obvious terrain scarps. The faulted sections can only be seen in the gullies which cross the terrain scarp at the south of Guozhuang Village and Tanjiazhuang Village. The fault dislocates the Pliocene red clay and the middle Pleistocene Lishi loess and covered by Malan loess; continuous paleosoil can be seen across the terrain scarp in some gullies. These indicate that in this section the fault was active in the early middle Pleistocene and its activity becomes weaker or no longer active after that.
The fault in the section between Tanjiazhuang Village and Nanliu Village can be divided into three parts by Shidian Village and Jinming Village, which are named, from west to east in sequence according to each faulted landform, the northern marginal fault of lacustrine terrace, the piedmont fault of Zijin Mountain and the northern marginal fault of loess platform. The fault transition area between each part is continuous and the fault is in linear distribution, so we see the whole fault section as having the same activity. In this section the Holocene diluvial fan is faulted. At least two plaeoearthquake events happened since Holocene, and the latest activity is in (2.00~1.29) ka BP according to Renzhuang trench and Jinsha trench, which can be well compared with former researches. The fault slip rate is over 0.33mm/a in the section south of Maguduo Village and is more than 0.36mm/a according to Renzhuang trench since the later period of the late Pleistocene.
In the section between Nanliu Village and Xizhangpo Village, the fault distributes along the frontal edge of the diluvial platform and is covered by thick loess. A 50~200m high linear terrain scarp formed due to the activity of fault can be seen along the frontal edge especially in the part between Xunwang Village and Xulu Village. At north of Wuzhai Village, the height of scarp decreases progressively and to the place near Xizhangpo Village, the terrain scarp cannot be seen clearly. In this section, Malan loess is faulted, which indicates that this fault section has been active since the late Pleistocene, but the evidence of Holocene fault activity has not been obtained yet due to the non-development of Holocene stratum. The fault slip rate is no less than 0.1mm/a since the late Pleistocene according to the faulted section at south of Xunwang Village.

Reference | Related Articles | Metrics
FEATURES OF SEISMOGENIC STRUCTURES OF GREAT EARTHQUAKES IN THE BOHAI BAY BASIN AREA,NORTH CHINA
XU Jie, ZHOU Ben-gang, JI Feng-ju, GAO Zhan-wu, CHEN Guo-guang, SUN Jian-bao
SEISMOLOGY AND GEOLOGY    2012, (4): 618-636.   DOI: 10.3969/j.issn.0253-4967.2012.04.008
Abstract1257)      PDF(pc) (5452KB)(1827)       Save

Seismogenic structure is the core of seismo-geology. The Bohai Bay Basin area in North China is highly active in terms of seismicity,where six earthquakes of M≥7.0 have occurred. After the 1966 M7.2 Xingtai event,some researchers suggested that the seismogenic structure of this earthquake was associated with the Cenozoic normal faults and the fault-depression basins the faults controls. In 1986,however,some authors proposed that this quake should be attributed to a high-angle fault beneath the basin.
The purpose of this paper is to give a systematic elucidation on seismogenetic structures in the Bohai Bay Basin area,North China,which are built on the geological studies in combination with exploration to deep structures in the seismic areas. The paper analyzes and compares the geometric features and structural attributes as well as their dynamic conditions of the Bohai Bay Basin in two evolution stages,i.e.the Eogene when the fault-depression formed and mid Miocene(12~10Ma)when the neotectonics developed. It emphasizes the distinct dynamic conditions in these two stages that formed different structural systems. In the stage of fault-depression,this area was subject to extension in NW-SE direction,which produced many gentle normal faults in the shallow subsurface that characterized the fault-bounded depression basins. While in the neotectonic stage,a set of conjugate fault system consisting of NE-trending right-lateral slip-strike faults and NW-directed left-lateral strike-slip faults were generated by the NEE to approximately EW-orientated horizontal compressional stresses. The structure of the first stage was pre-existing,while that of the second stage has both inheritance and variance to the first stage,i.e.superposition and reform,which accounts for the gestation and occurrence of the present-day major earthquakes in this area.

Reference | Related Articles | Metrics
A PRELIMINARY STUDY ON DATONG FAULT BELT
LI Zhi-min, TIAN Qin-jian, YAO Sheng-hai, LI Wen-qiao, GAO Zhan-wu
SEISMOLOGY AND GEOLOGY    2007, 29 (4): 855-862.  
Abstract2179)      PDF(pc) (4561KB)(1134)       Save
Datong Fault belt is a northwest trending fault in the north of Qinghai-Tibet plateau which controls the boundary of Xining Basin and Datong Basin.It consists of the Maziying-Miaogou(F1)Fault and the Laoye mountain-Nanmenxia Fault(F2).There is obvious displacement in vertical direction along the fault belt.The field investigation results show that this belt has long-term activity.There are several meters-long crushed zone and veins along the fault side in the basement rock.In the visible profile of fault,the Cambria system thrusts to the red brick Quaternary gravel,and there are several centimeters-thick fault gouges along the fault side.ESR dating of the fault gouge in the fault profile shows an age of(610?61)ka.The covering deluvial loess is not offset,and the OSL result is(14.6?1.5)ka.So it can be concluded that the fault belt was active in middle Pleistocene but not in later Pleistocene according to the age data and geomorphologic feature.Interior stratum of the Datong Basin is mainly featured with fold with the major axis in northwest direction.According to the relation of fault and fold deformation,Datong Fault is a transversal tear,which is due to uneven compression of the folds in different parts and the NNE-oriented regional compressional stress.It is common among the NE-trending faults in northeastern Qinghai-Tibet plateau.These NE-trending faults aren't large,and most are located in the active plate.They are all nearly vertical to the axis of the folds and compressive basins.
Related Articles | Metrics
PRELIMINARY STUDY ON FAULTED LANDFORMS AND RECENT STRONG EARTHQUAKE ACTIVE AGES OF KARAKORUM FAULT IN NGARI PREFECTURE, TIBET
Zhi-cheng LIU Gao Zhan-Wu Jinhui Yin
SEISMOLOGY AND EGOLOGY   
Accepted: 09 December 2021