Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
DISCUSSION ON RUPTURE CHARACTERISTICS OF THE 2013 TONGLIAO M5.3 EARTHQUAKE AND ITS AFTERSHOCKS
HAN Xiao-ming, ZHANG Fan, CHEN Li-feng, LI Juan, HU Bo
SEISMOLOGY AND GEOLOGY    2018, 40 (3): 685-697.   DOI: 10.3969/j.issn.0253-4967.2018.03.013
Abstract1093)   HTML    PDF(pc) (5393KB)(441)       Save
On two velocity models, the HypoDD method is used to accurately locate the Tongliao M5.3 earthquake sequence, then the CAP method is used to invert the focal mechanism solutions. The parameters of the seismogenic fault plane are fitted quantitatively by the small earthquake distribution and the regional stress field. The geometry, rupture features and possible seismogenic structure of the Tongliao M5.3 earthquake are comprehensively determined. The HypoDD relocation results show that this earthquake is located at 42.95°N, 122.37°E, the whole sequence trends in NW and major aftershocks (ML ≥ 3.0) strike in NEE direction. With the time elapsed, the aftershocks extended to the shallow crust gradually. Comparing the focal mechanism solutions and relocation results, we determine that the fitted causative fault based on NNW-trending aftershock distribution is reliable, which has the top left corner (43.00°N, 122.35°E, depth 3.3km), lower left corner (43.00°N, 122.35°E, depth 8.9km), upper right corner (42.92°N, 122.37°E, depth 3.3km), lower right corner (42.92°N, 122.37°E, depth 8.9km), extending range 3km×7km, trending in 349° (NNW), dip angle 86° (nearly vertical), and slip angle 15°. It is inferred that whole process of main shock rupture is from the source to the NW and SE sides as a shear. The rupture degree is larger in southeast where the late rupture concentrated, and did not reach the surface.
Reference | Related Articles | Metrics
3D P-WAVE VELOCITY STRUCTURE AT THE NORTHEASTERN MARGIN OF ORDOS BLOCK
HAN Xiao-ming, Liu Fang, ZHANG Fan, CHEN Li-feng, LI Juan, LI Shuan-hu, YANG Hong-ying
SEISMOLOGY AND GEOLOGY    2018, 40 (1): 215-231.   DOI: 10.3969/j.issn.0253-4967.2018.01.016
Abstract640)   HTML    PDF(pc) (7278KB)(304)       Save
Using the 7 100 absolute first arrivals of P waves and 91 513 relative P arrival times of 726 events at the northeastern margin of the Ordos block since 2009, the 3D fine structure of P wave velocity within the depth of 15km in the crust was inverted by the double difference seismic tomography method. The results show that there exist obvious high-speed continuous bodies in the northwest of the study area, and their lateral areas increase gradually with depth, while the velocity of east and south is relatively low. The velocity inhomogeneity exists and differs at different depths. The lateral differences of velocity are related to seismicity and faults. The 5~15km depth profile shows that earthquakes tend to occur in the area with relatively high velocity or high speed transition zones, which to some extent reflects the fragility of regional crustal media and the strong differential movement of faults in vertical and horizontal directions where the crust body is easy to absorb and store strain energy and generate major earthquakes. A "Y"-shape low-velocity channel is present in the lower crust around Liangcheng, corresponding to the NW-trending Heilaoyao-Shahukou fault set, which may reveal the migration path of the Late Tertiary-Quaternary basalt eruption. The Helingeer M6.2 earthquake in 1976 was related to the formation of the locking section of the thermal welding in this area. The three-dimensional fine structure of P wave velocity presented in this paper provides intuitive seismological evidence for physical and chemical properties of crustal media and the deep tectonic environment of earthquake preparation.
Reference | Related Articles | Metrics
analyzing the variation characteristics of stress field in hetao seismic belt using focal mechanism data
HAN Xiao-ming, LIU Fang, ZHANG Wen-tao, LI Juan, HOU Di
SEISMOLOGY AND GEOLOGY    2015, 37 (4): 1030-1042.   DOI: 10.3969/j.issn.0253-4967.2015.04.008
Abstract780)      PDF(pc) (5170KB)(490)       Save

Based on analysis of background of geological tectonic movement and strong earthquake activity, we first obtained the focal mechanism solutions using amplitude ratio and CAP method, then determined the characteristic of average stress field of the study area by inversion of the stress field. On this basis, we selected the source mechanism consistency parameter as the inspection index to obtain the latest changes of stress field in Hetao seismic zone based on its temporal and spatial analysis. Two methods were used in the stress field inversion for comparison and analysis, which are average stress axis tensor and LSIB(Linear stress inversion bootstrap, LSIB). According to the geological tectonic movement and focal mechanism solutions of MS≥4.0 earthquakes from 1970, we judge that the stress field evolution process of Hetao seismic belt is controlled jointly by vertical difference movement and horizontal shear movement, resulting in that the normal fault and strike-slip fault mechanisms are dominating.Taking into account the station layout of the study area, and in order to ensure the accuracy of calculation, we calculated 224 earthquakes focal mechanism solutions by using amplitude ratio and CAP method, including 164 earthquakes with 2.8≤ML<3.5, 42 earthquakes with 3.5≤ML<4.0, and 18 earthquakes with ML≥4.0; The statistical results on type of focal mechanisms show that, there are 142 strike-slip earthquakes(63.4%), 50 normal fault earthquakes(22.3%)and 32 thrust fault earthquakes(14.3%). In this study period(from 2001 to 2012), most earthquakes had a strike-slip mechanism in Hetao seismic belt, this is one of the inherent characteristics of the stress field.The result of average stress axis tensor and LSIB shows that, the azimuth of maximum compressional stress is 47°~52°, direction is NE-SW; The azimuth of minimum compressional stress is 313°~322°, direction is NW-SE; This indicates that, the stress field characteristics of Hetao seismic belt and its sub-block are not completely consistent. Linhe Basin exhibits coordinated stress field characteristics with Hetao seismic belt, but Hubao Basin exhibits regional differences, direction of compressive stress has clockwise deflection in Baotou area, and the compressive stress direction is NEE. This heteropical character of stress field is also confirmed by horizontal projection distribution of stress axis of historical strong earthquakes and recent moderate and small earthquakes. Since 2003, the temporal sequence curve of consistency parameter of Hetao seismic belt had a downward trend, this change was caused by focal mechanism consistency parameter of Linhe to Wuhai area, which indicates that this structural position is possible to be a priority area for stress accumulation and accelerated release in future.

Reference | Related Articles | Metrics