Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
RESEARCH ON NEOGENE-QUATERNARY STRATIGRAPHIC STRUCTURE AND SHALLOW TECTONIC FEATURES IN THE NORTH SECTION OF DAXING FAULT ZONE BASED ON SHALLOW SEISMIC REFLECTION PROFILING
HE Fu-bing, XU Xi-wei, HE Zhen-jun, ZHANG Xiao-liang, LIU Li-yan, ZHANG Wei, WEI Bo, NI Jing-bo
SEISMOLOGY AND GEOLOGY    2020, 42 (4): 893-908.   DOI: 10.3969/j.issn.0253-4967.2020.04.008
Abstract778)   HTML    PDF(pc) (8744KB)(320)       Save
The Daxing Fault is an important buried fault in the Beijing sub-plain, which is also the boundary fault of the structural unit between Langgu sub-sag and Daxing sub-uplift. So far, there is a lack of data on the shallow tectonic features of the Daxing Fault, especially for the key structural part of its northern section where it joins with the Xiadian Fault. In this paper, the fine stratigraphic classifications and shallow tectonic features of the northern section in the main Daxing Fault are explored by using three NW-trending shallow seismic reflection profiles. These profiles pass through the Daxing earthquake(M6¾)area in 1057AD and the northern section of the main Daxing Fault. The results show that seven strong reflection layers(T01—T03, TQ and T11—T13)are recognized in the strata of Neogene and Quaternary beneath the investigated area. The largest depth of strong reflection layer(T13)is about 550~850ms, which is interpreted as an important surface of unconformity between Neogene and Paleogene or basement rock. The remaining reflection layers, such as T01 and TQ, are interpreted as internal interfaces in Neogene to Quaternary strata. There are different rupture surfaces and slip as well as obviously different structural features of the Daxing Fault revealed in three shallow seismic reflection profiles. The two profiles(2-7 and 2-8)show obvious rupture surfaces, which are the expression of Daxing Fault in shallow strata. Along the profile(2-6), which is located at the end of the Daxing fault structure, a triangle deformation zone or bending fracture can be identified, implying that the Daxing Fault is manifested as bending deformation instead of rupture surfaces at its end section. This unique structural feature can be explained by a shearing motion at the end of extensional normal fault. Therefore, the Daxing Fault exhibits obviously different tectonic features of deformation or displacement at different structural locations. The attitude and displacement of the fault at the shallow part are also different to some extent. From the southwest section to the northeast section of the fault, the dip angle gradually becomes gentler(80°~60°), the upper breakpoint becomes deeper(160~600m), and the fault displacement in Neogene to Quaternary strata decreases(80~0m). Three shallow seismic reflection profiles also reveal that the Daxing Fault is a normal fault during Neogene to early Quaternary, and the deformation or displacement caused by the activity of the fault reaches the reflection layer T02. This depth is equivalent to the sedimentary strata of late Early-Pleistocene. Therefore, the geometry and morphology of the Daxing Fault also reveal that the early normal fault activity has continued into the Early Pleistocene, but the evidence of activity is not obvious since the late Pleistocene. The earthquakes occurring along the Daxing Fault, such as Daxing earthquake(M6¾)in 1057AD, may not have much relation with this extensional normal fault, but with another new strike-slip fault. A series of focal mechanism solutions of modern earthquakes reveal that the seismic activity is closely related to the strike-slip fault. The Daxing Fault extends also downwards into the lower crust, and may be cut by the steeply dipping new Xiadian Fault on deep seismic reflection profile. The northern section of the Daxing Fault strikes NNE, with a length of about 23km, arranged in a right step pattern with the Xiadian Fault. Transrotational basins have been developed in the junction between the northern Daxing Fault and the southern Xiadian Fault. Such combined tectonic features of the Daxing Fault and Xiadian Fault evolute independently under the extensional structure background and control the development of the Langgu sub-sag and Dachang sub-sag, respectively.
Reference | Related Articles | Metrics
A NEW METHOD FOR COLOR MEASUREMENT OF QUATERNARY DRILLING CORE DEPOSITS
HE Fu-bing, XU Xi-wei, ZHENG Gui-sen, SUN Yong-hua, ZHANG Wei, LI Li, LI Rui-jie
SEISMOLOGY AND GEOLOGY    2018, 40 (4): 920-934.   DOI: 10.3969/j.issn.0253-4967.2018.04.014
Abstract518)   HTML    PDF(pc) (9066KB)(163)       Save
In this paper, a method for measuring the color of Quaternary sediments based on digital image analysis is proposed, which has the advantages of simple and quick operation, and improving the research efficiency of sediment color. In order to demonstrate the feasibility of this method, the measurement results are compared with the traditional colorimetric measurement methods. The results show that:1) Both the traditional sediment color measurement method and the digital image color measurement method are controlled by sediment grain size. Sediment color research can be carried out on fine sand or finer sediments, but for medium grained sand and coarse sand, the error will be larger. Compared with the traditional measurement methods, digital image method can reduce the inherited color interference of coarse clastic sediments; 2) The particle size and water content of clastic sediments affect the numerical value of digital image sediment color. Generally, the wet-color values obtained by the digital image method are lower than the dry-color values obtained by using a spectrophotometer, and the color value variation is large, and the undulation of chromaticity/brightness curve is greater; 3) Compared with the traditional sediment color measurement method, digital image method has good consistency of color measurement of redness and yellowness, but the brightness is affected by uneven illumination, resulting in some error. Sediment digital image extraction of sediment color information can replace the indoor measurement method to a certain extent, and can be used to establish a more complete sediment color sequence under more complex sedimentary environment, so as to provide information for the Quaternary stratigraphic division, paleoclimate research, paleosol recognition and paleoearthquake event identification, thus expanding the application of colorimetric results to the geological direction.
Reference | Related Articles | Metrics
THE DIFFERENCE OF DEPOSITION RATE IN THE BOREHOLES AT THE JUNCTION BETWEEN NANKOU-SUNHE FAULT AND HUANGZHUANG-GAOLIYING FAULT AND ITS RESPONSE TO FAULT ACTIVITY IN THE BEIJING AREA
ZHANG Lei, BAI Ling-yan, ZHAO Yong, ZHANG Xiao-liang, YANG Tian-shui, CAI Xiang-min, HE Fu-bing
SEISMOLOGY AND GEOLOGY    2017, 39 (5): 1048-1065.   DOI: 10.3969/j.issn.0253-4967.2017.05.013
Abstract604)   HTML    PDF(pc) (3224KB)(434)       Save
Beijing plain area has been always characterized by the tectonic subsidence movement since the Pliocene. Influenced and affected by the extensional tectonic environment, tensional normal faulting occurred on the buried NE-trending faults in this area, forming the "two uplifts and one sag" tectonic pattern. Since Quaternary, the Neocathaysian stress field caused the NW-directed tensional shear faulting, and two groups of active faults are developed. The NE-trending active faults include three major faults, namely, from west to east, the Huangzhuang-Gaoliying Fault, Shunyi Fault and Xiadian Fault. The NW-trending active faults include the Nankou-Sunke Fault, which strikes in the direction of NW320°~330°, with a total length of about 50km in the Beijing area. The northwestern segment of the fault dips SW, forming a NW-directed collapse zone, which controls the NW-directed Machikou Quaternary depression. The thickness of the Quaternary is more than 600 meters; the southeastern segment of the fault dips NE, with a small vertical throw between the two walls of the fault. Huangzhuang-Gaoliying Fault is a discontinuous buried active fault, a boundary line between the Beijing sag and Xishan tectonic uplift. In the Beijing area, it has a total length of 110km, striking NE, dipping SE, with a dip angle of about 50~80 degrees. It is a normal fault, with the maximum fault throw of more than 1 000m since the Tertiary. The fault was formed in the last phase of Yanshan movement and controls the Cretaceous, Paleogene, Neogene and Quaternary sediments.There are four holes drilled at the junction between Nankou-Sunhe Fault and Huangzhuang-Gaoliying Fault in Beijing area. The geographic coordinates of ZK17 is 40°5'51"N, 116°25'40"E, the hole depth is 416.6 meters. The geographic coordinates of ZK18 is 40°5'16"N, 116°25'32"E, the hole depth is 247.6 meters. The geographic coordinates of ZK19 is 40°5'32"N, 116°26'51"E, the hole depth is 500.9 meters. The geographic coordinates of ZK20 is 40°4'27"N, 116°26'30"E, the hole depth is 308.2 meters. The total number of paleomagnetism samples is 687, and 460 of them are selected for thermal demagnetization. Based on the magnetostratigraphic study and analysis on the characteristics of sedimentary rock assemblage and shallow dating data, Quaternary stratigraphic framework of drilling profiles is established. As the sedimentation rate of strata has a good response to the activity of the basin-controlling fault, we discussed the activity of target fault during the Quaternary by studying variations of deposition rate. The results show that the fault block in the junction between the Nankou-Sunhe Fault and the Huangzhuang-Gaoliying Fault is characteristic of obvious differential subsidence. The average deposition rate difference of fault-controlled stratum reflects the control of the neotectonic movement on the sediment distribution of different tectonic units. The activity of Nankou-Sunhe Fault shows the strong-weak alternating pattern from the early Pleistocene to Holocene. In the early Pleistocene the activity intensity of Huangzhuang-Gaoliying Fault is stronger than Nankou-Sunhe Fault. After the early Pleistocene the activity intensity of Nankou-Sunhe Fault is stronger than Huangzhuang-Gaoliying Fault. The activity of the two faults tends to consistent till the Holocene.
Reference | Related Articles | Metrics
DEEP STRUCTURE AND QUATERNARY ACTIVITIES OF THE XIADIAN FAULT ZONE
HE Fu-bing, BAI Ling-yan, WANG Ji-ming, LIU Yu, CAI Xiang-min, SUN Yong-hua, ZHANG Lei, FANG Tong-ming, GUO Gao-xuan
SEISMOLOGY AND GEOLOGY    2013, 35 (3): 490-505.   DOI: 10.3969/j.issn.0253-4967.2013.03.004
Abstract938)      PDF(pc) (3272KB)(1249)       Save

Xiadian Fault zone is a NNE-trending lithospheric-scale regional deep fault in the eastern part of the capital,also an active fault zone with strong earthquake activities in the history. According to the results of gravity,shallow seismic and high-density electrical geophysical prospecting,by "relay stitching" vertically from the deep to the shallow,and in combination with the methods of drilling and other means,the Xiadian Fault zone is studied by dividing it into two parts: the bedrock fault zone and the Quaternary fault zone,and new insights are gained on the characteristics of deep structure and activity of the Xiadian Fault zone. The results show that: (1)the bedrock fault zone of Xiadian Fault consists of main faults and secondary faults. Its northern part,the Mafang-Xiji area,is composed of two major faults with a narrower width,and the southern part,the Xiji-Fengheying area,is composed of three major faults,with a wider width; (2)The Quaternary fault zone of Xiadian Fault is the upward extension of the bedrock fault zone,which is the visual representation of the latest activity of the fault zone and controlled by the bedrock fault zone. The Quaternary fault zone is also composed of main faults and secondary faults. The northern part(Mafang-Xiji area)consists of two major faults and secondary faults distributed in the northern end,corresponding well with the bedrock fault zone. Occurrence of the two major faults is quite different,and the latest movement of the faults is both in Holocene. While,the southern part of the fault zone(the Xiji-Fengheying area)is quite discontinuous and is difficult to distinguish between the major and secondary faults. The faults have poor correspondence to the bedrock ones and are inferred to be related with the segmentation of faulting of the bedrock faults. Both major and secondary faults are steep and the date of their latest movement is late Pleistocene-early Holocene; (3)The amount of vertical dislocation of the bottom boundary of the Holocene sediments in the hanging and foot walls of Xiadian Fault zone is 1.7~4.8m,and that of late,middle and early Pleistocene are 6~26m,26~167m and 44~330m,respectively. The vertical dislocation on the whole fault zone differs greatly,with the highest in the Xiadian area,and decreasing gradually to the south and north ends; (4)Considering the spatial distribution,structure,occurrence,activity and characteristics of seismic activity along of the fault zone,the Xiadian Fault zone is divided into the southern and northern segments with the Zhangjiawan Fault as the boundary. The northern part experienced intensive Quaternary activity,with frequent moderate and small earthquakes. Quaternary activity is weak along the southern part,where only small earthquakes occurred.

Reference | Related Articles | Metrics