Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
RELOCATION AND FOCAL MECHANISM SOLUTIONS OF THE 2021 YANGBI, YUNNAN MS6.4 EARTHQUAKE SEQUENCE
WANG Ying, ZHAO Tao, HU Jing, LIU Chun
SEISMOLOGY AND EGOLOGY    2021, 43 (4): 847-863.   DOI: 10.3969/j.issn.0253-4967.2021.04.007
Abstract1662)   HTML46)    PDF(pc) (8652KB)(274)       Save

On May 21, 2021, a strong earthquake of magnitude 6.4 occurred in Yangbi County, Dali Prefecture, Yunnan Province. The focal depth of this earthquake is 8km. The earthquake broke the calm of magnitude 6 earthquake that had lasted for more than 6 years in Yunnan, and is a significant strong earthquake in the northwestern Yunnan region. Before the MS6.4 Yangbi earthquake, the foreshock activity near the epicenter was frequent, and the maximum magnitude of foreshock is 5.6. After the MS6.4 earthquake, another MS5.2 earthquake, and many aftershocks of magnitude 3 and 4 occurred. The earthquake sequence was very rich. In order to further study the spatio-temporal distribution, source characteristics and seismogenic structure of the magnitude 6.4 earthquake sequence in Yangbi, in this paper more than 2 800 seismic events of the Yangbi earthquake sequence were relocated using the double-difference relative positioning method based on the seismic phase data from the Seismic Cataloging System of China Earthquake Networks Center, and finally 2 116 precise location results were obtained. At the same time, based on the broadband digital waveform data provided by the China Earthquake Networks Center, focal mechanism solutions 31 earthquakes of the sequence were obtained by MTINV program.

The results of the moment tensor inversion show that the moment magnitude of the Yangbi MS6.4 earthquake is MW6.0, the centroid depth is 10km, and the optimal double-couple solution is strike 135°, dip 81° and rake 176° for nodal plane I, and strike 226°, dip 86° and rake 9° for nodal plane Ⅱ. It is a strike-slip earthquake. Combining the strike of the fault in the earthquake source area and the distribution of aftershocks, it is inferred that the seismogenic fault is the nodal plane Ⅰ which strikes NW. Focal mechanism solutions of other 30 earthquakes of the sequence are mainly strike-slip type, which are consistent with the main shock. There are also a few events with mixed types. The focal mechanisms of several earthquakes close to the occurrence time of the MS6.4 main earthquake are in good agreement with the main earthquake. The relocation results show obvious linear distribution characteristics of the sequence. The overall strike is in the NW direction and the dip to the SW direction. The depth profile sequence is horizontally linear along the strike. The dip angles of the fault planes in the south and north sections are different. The dip angles of the northern section are approximately vertical, and that of the southern section is about 45° or so. However, the sequence of the northern section is more concentrated along the fault plane than southern section. The dominant strike of the Yangbi earthquake sequence is NW-SE, the dip angles are concentrated between 70° and 90°, and the rakes are distributed around 180°, indicating that the Yangbi earthquake sequence is mainly characterized by strike-slip faulting. The dominant azimuth of the P-axis is SN and that of the T-axis is EW. The plunge of P-axis and T-axis are near horizontal. This indicates that the activities of the Yangbi earthquake sequence are mainly controlled by the regional SN-direction horizontal compression stress field. The dominant directions of the sequence’s fault planes and P-axis parameters are single, indicating that it is less likely that complex fault activity and large-scale stress adjustment will occur in the source area of this earthquake.

Integrating the results of relocations and focal mechanisms, it suggests that the seismogenic fault of Yangbi earthquake is a right-handed strike-slip active fault, striking northwest and dipping to the southwest, and the dip distribution is segmented. The dip angle of the northern segment is nearly vertical, and the dip angle of the southern segment is lower than that of the northern segment. There may exist rupture segmentation in the fault in the earthquake source area, and the structure morphology of local small areas may be more complicated.

Table and Figures | Reference | Related Articles | Metrics
RELOCATION AND FOCAL MECHANISM SOLUTIONS OF THE 2021 MADUO, QINGHAI MS7.4 EARTHQUAKE SEQUENCE
ZHAO Tao, WANG Ying, MA Ji, SHAO Ruo-tong, XU Yi-fei, HU Jing
SEISMOLOGY AND EGOLOGY    2021, 43 (4): 790-805.   DOI: 10.3969/j.issn.0253-4967.2021.04.004
Abstract2210)   HTML57)    PDF(pc) (5589KB)(464)       Save

On May 22, 2021, an MS7.4 earthquake occurred in Maduo County, Guoluo Prefecture, Qinghai Province, which is the biggest earthquake in mainland China since the 2008 Wenchuan MS8.0 earthquake. It occurred in the Bayan Har block in the northern part of the Qinghai-Tibet Plateau, indicating that the Bayan Har block is still the main area for strong earthquakes activity in mainland China. In order to study the source characteristics and seismogenic structure of the Maduo earthquake, we used the double-difference location method to analyze the spatial distribution of earthquake sequences within 15 days after the mainshock. At the same time, the focal mechanism solutions of 15 aftershocks with MS≥4.0 are also obtained by full-waveform moment tensor inversion. We hope to provide seismological evidences with reference value for the study of the dynamic process of the Madao MS7.4 earthquake and the geological tectonic activities on the northern side of the Bayan Hala block.

The results of moment tensor inversion show that the moment magnitude of the Maduo earthquake is about 7.24, the centroid depth is 13km, and the best double-couple solution is strike 283°, dip 59° and slip -4° for the nodal plane I, and strike 15°, dip 86° and slip -149° for the nodal plane Ⅱ, which indicates a strike-slip earthquake event. According to the strike of the fault and the distribution of aftershocks in the source area, we infer that the nodal plane I, which strikes NWW, is the seismogenic fault plane. The focal mechanism results of 15 aftershocks show that the aftershock sequence is mainly strike-slip type, which is consistent with the main shock. Meanwhile, there are also some other types reflecting the local complex structure. The differences in the direction and type of focal mechanism may reveal changes in the direction and characteristic of the fault from north to south. The azimuth of the P-axis is NE-SWW, and the azimuth of the T-axis is NNW-SSE. Both plunge angles are within 30° and close to horizontal, which shows that the activities of the Maduo earthquake sequence are mainly controlled by the horizontal compression stress field in the northeast-southwest direction. From NWW to SEE, the dip angle of fault plane increases gradually from 77° to 88°, and the northern segment dips to SW.

Based on the results of relocation, moment tensor inversion and geological structure, preliminary conclusion can be drawn that the seismogenic fault of the Maduo earthquake may be the Kunlun Mountain Pass-Jiangcu Fault, which is a left-handed strike-slip fault. At the same time, there are certain segmental differences along the fault. The strike of the northern section is mainly NW, that of the middle section is NWW, and the southern section is near E-W, and the fault plane dips to the southwest with the dip angle increasing gradually from NWW to SEE.

Table and Figures | Reference | Related Articles | Metrics
STUDY OF DIFFERENT-STAGE QUATERNARY TECTONIC STRESS FIELD FOK THE XIANSHUIHE FAULT ZONE
Xie Furen, Zhu Jingzhong, Shu Saibing
SEISMOLOGY AND GEOLOGY    1995, 17 (1): 35-43.  
Abstract1552)      PDF(pc) (1107KB)(1097)       Save
By use of fault slip data in invesion of using different-stage tectonic stress tensors,we have obtained two stages of tectonic Quaternary stress field of the Xianshuihe fault zone. In the first stage(from early-mid Pleistocene),the tectonic stress field is characteristic of NE-SW compression. In the second phase(from late-Pleistocene to the present),the tectonic stress field is mainly characteristic of nearly E-W compression and nearly S-N extension. In this stress field,the Xi-anshuihe fault mainly shows a left-lateral slip.
Related Articles | Metrics
NUMERICAL SIMULATION OF TECTONIC STRESS FIELD IN SICHUAN-YUNNAN RHOMBIC BLOCK
Wang Ji-cun, Huang Qin-yang, Xu Chun-rong, Zhu Jing-zhong
SEISMOLOGY AND GEOLOGY    1991, 13 (1): 67-72.  
Abstract1130)      PDF(pc) (935KB)(837)       Save
In this paper a simulation of the tectonic stress field in Sichuan-Yunnan rhombic block is conducted using a finite element technique from the absolute stress data at actual measurement depth of 500m. The relation ship between the tectonic stress state and the distribution of strong earthqukes in the area is analyzed. The computed result is basically consistent with the actual measurement data. Three zones with maximum shear stress inside the tectonic stress field correspond to the three seismic zones in this region. The obtained result reveals quantitatively the distribution and state of the present tectonic stress in this region.
Related Articles | Metrics