Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
DOUBLE-DIFFERENCE RELOCATION OF YUNNAN YANGBI MS6.4 EARTHQUAKE SEQUENCE ON MAY 21, 2021 AND TECTONIC IMPLICATIONS
XU Yong-qiang, LEI Jian-she, HU Xiao-hui
SEISMOLOGY AND GEOLOGY    2024, 46 (5): 1066-1090.   DOI: 10.3969/j.issn.0253-4967.2024.05.005
Abstract236)   HTML22)    PDF(pc) (12112KB)(102)       Save

At 21:48 on May 21, 2021(Beijing time), the MS6.4 earthquake occurred in western Town(25.700°N, 99.880°E), Yangbi County, Dali, Yunnan Province, with a focal depth of 10km(China Earthquake Networks Center). The Yangbi earthquake is a typical type of foreshock-mainshock-aftershock earthquake, which had a significant impact on the local residents and attracted great attention from society. To better understand the seismogenic structure and mechanism of this earthquake, the present study relocates the May 21, 2021 Yangbi MS6.4 earthquake sequence, collected from the China Earthquake Networks Center from 2021 to June 18, 2022. Finally, 2681 precisely located events are obtained through the double-difference relocation algorithm. Our results show that the Yangbi earthquake sequence extended for about 32km, mainly along the NW-SE direction, and it is an overall echelon structure changing from narrow in the northwest to broad in the southeast. The dominant depth of the earthquake sequence is 5-10km. The foreshocks were mainly active in the northern section of this earthquake sequence, with the mainshock being a unilateral rupture. The aftershocks primarily extended in the southeast direction, but the southeast extension process was not simply a unilateral extension. Multiple secondary oblique activity sequences were derived on the west side of the sequence. With the continuous release of stress in the study area, only the main rupture continued to be active in the southeastern section of the sequence in the later stage of activity. Still, the secondary oblique ruptures that evolved was no longer active. The average location errors of these earthquakes are about 0.47km in the east-west direction, about 0.50km in the north-south direction, and 0.62km in the vertical direction, and the average RMS travel-time residual is 0.22s.

This study collects broadband digital seismic waveform data of earthquakes with MS≥4.0 on the main fault of the earthquake sequence recorded by regional seismic networks in Yunnan, Sichuan, and other areas from the International Earthquake Science Data Center. The focal mechanism solutions of the major earthquake events are obtained using the gCAP full waveform inversion method. The results show that the focal mechanism solutions of earthquakes with MS≥4.0 on the main fault all have an NW-SE oriented nodal plane I, consistent with the dominant distribution of the NW-SE oriented sequence. Except for the nodal plane I of the Yangbi MS5.6 earthquake, which has a northeast dipping angle, all other focal mechanism solutions have a southwest dipping nodal plane I, which was consistent with the sequence orientation as shown in the vertical cross sections. According to the inclination angles of the P, B, and T axes, the inverted focal mechanism solutions all belong to a strike-slip type.

In this study, the parameters of the seismic fault plane are fitted in segments according to the distribution density of small-to-medium-sized earthquakes. The results show that the strike trending of the main fault plane varies between 126°-137° and gradually increases from north to south, dipping towards the southwest. The dip angle varies between 79°-87° gradually decreasing from north to south. There are four secondary oblique faults with variations in striking directions of 157°, 338°, 157° and 313° from north to south, corresponding to dip angles of 86°, 87°, 87°, and 86°, respectively.

Based on the above research results, combined with the background stress field and VP/VS tomographic results, it is inferred that the Yangbi earthquake occurred on the high-dip-angle and NW-SW strike-slip faults in the southwest mountainous areas of Yangbi County. These faults consist of a strike-slipping main fault and multiple secondary crisscrossing small faults, which may be jointly affected by regional stress and deep fluid activity.

Table and Figures | Reference | Related Articles | Metrics
THE STATIC COULOMB STRESS INFLUENCE OF THE MAINLING M6.9 EARTHQUAKE IN TIBET ON NOVEMBER 18, 2017 TO THE SUBSEQUENT EARTHQUAKES
LI Zhen-yue, WAN Yong-ge, JIN Zhi-tong, YANG Fan, HU Xiao-hui, LI Ze-xiao
SEISMOLOGY AND GEOLOGY    2020, 42 (5): 1091-1108.   DOI: 10.3969/j.issn.0253-4967.2020.05.005
Abstract634)   HTML    PDF(pc) (4980KB)(811)       Save
Based on the rupture model of Mainling M6.9 earthquake in Tibet on November 18, 2017, the spatial distribution of static Coulomb failure stress change at different depths are calculated respectively according to two different receiving fault selection schemes. The one scheme is that we set the parameters of receiving fault at different position to be consistent with the main shock; The other scheme is on the assumption that fault's orientation is randomly distributed under the ground, and we select the receiving fault which is most prone to slide under the influence of coseismic stress field produced by main shock. Therefore, the geometrical orientation of receiving fault will vary with space. According to the above two results of static Coulomb failure stress change, we discussed the static Coulomb stress influence produced by the main shock to short-term aftershocks and the Medog M6.3 earthquake in Tibet on April 24, 2019, respectively. The result shows that: 1)When the parameters of receiving fault are same with the main shock, the proportion of aftershocks in the positive zone of static Coulomb failure stress change is small at each depth. The focal mechanisms of aftershocks in the positive zone of static coulomb fracture stress are deemed similar to the main shock. We thought that they are motivated by the continuous rupture of the main shock. 2)Most of the aftershocks are in the negative zone of static Coulomb failure stress change at each depth. We inferred that this phenomenon which may be on account of the focal mechanisms of these aftershocks is quite different with the main shock. From the result of receiving fault to choose the most prone to slide under the coseismic stress field produced by main shock, we can clearly see that all the aftershocks are within the zone of static Coulomb failure stress change greater than the trigger threshold of 0.01MPa at different depths. It indicates that all the aftershocks are likely to be triggered. It was speculated that the aftershocks in the negative zone of static Coulomb failure stress change occurred in the crushed zone caused by violent rupture of the main shock. There are countless cracks in the crushed zone, and the orientation of these cracks is abundant. Perhaps, because most aftershocks occurred on these various cracks, their focal mechanisms are quite different from the main shock. The value of elastic constants will be reduced significantly in the crushed zone. All the results in this paper also indicate that considering the elastic constants difference between in and out of the source region is beneficial to accurately estimate the static Coulomb stress influence between earthquakes in the source region. 3)Different institutes and authors used different data and methods to get several different focal mechanisms of the Medog earthquake. According to these results, we calculated a central focal mechanism solution, which has a minimum difference with these focal mechanisms. On the basis of this central focal mechanism solution, the static Coulomb stress influence of the Mainling earthquake to the Medog earthquake is calculated quantitatively. Result indicates that the magnitude of static Coulomb failure stress change generated by the Mainling earthquake is quite small on both two nodal planes of the central focal mechanism solution of the Medog earthquake, this means that the Medog earthquake is independent of the Mainling earthquake.
Reference | Related Articles | Metrics