The Weixi-Qiaohou Fault is located in the west boundary of Sichuan-Yunnan rhombic block, and also the north extension segment of active Red River fault zone. Strengthening the research on the late Quaternary activity of Weixi-Qiaohou Fault is of great theoretical and practical significance for further understanding the seismogeological background in northwest Yunnan and the structural deformation mechanism of the boundary of Sichuan-Yunnan block. Based on the 1︰50 000 active fault mapping and the research results of the National Natural Science Fund project, this paper mainly elaborates the latest active times of the fault and paleoseismic events along it revealed by exploration trenches at Matoushui, Shiyan, and Yushichang. Matoushui trench revealed three faults developed in late Pleistocene and Holocene pluvial fan accumulation, and the latest ages of faulted strata are(638±40)a BP and(1 335±23)a BP, respectively. The Shiyan trench revealed six faults, three in the western section and three in the eastern section. The three faults in the western section dislocated the late Pleistocene and Holocene accumulation, and the 14C ages of the latest faulted strata are(4 383±60)a BP, (4 337±52)a BP and(4 274±70)a BP, respectively; the other three faults revealed in the eastern part of the trench offset the Holocene fluvial facies accumulation, the 14C age of the latest faulted strata in the footwall of the main fault is(9 049±30)a BP, and the 14C ages of two sets of faulted sag pond deposits in the hanging wall are(1 473±41)a BP and(133±79)a BP, separately. Five active faults are revealed in Yushichang trench. Among them, the F1 and F2 dislocated the gray-white gravelly clay layer and the black peat soil layer. The 14C age of the gray-white gravelly clay layer is(1 490±30)a BP, and 14C ages of the upper and lower part of the black peat soil layer are(1 390±30)a BP and(1 190±30)a BP, respectively. The F3 and F4 faults offset the gray-white gravelly clay layer, the black peat soil layer and the brown yellow sand bearing clay, and the OSL age of brown yellow sand bearing clay is(0.6±0.2)ka. The F5 fault dislocated the gray-white gravelly clay layer, its 14C age is(1 490±30)a BP. According to the relationship between strata and the analysis of dating data, the Yushichang trench revealed two seismic events, the first one occurred at(1 490±30)~(1 390±30)a BP, as typified by the faulting of F5, the second paleoseismic event is represented by the faulting of F1, F2, F3 and F4.The F1 and F2 faulted the gray-white gravelly clay layer and the black peat soil. Fault F3 and F4 dislocated the gravelly clay, the peat soil and the sandy clay, and a seismic wedge is developed between fault F3 and F4, which is filled with the brownish yellow sandy clay. The OSL dating result of the brownish yellow sandy clay layer is(0.6±0.2)ka. Judging from the contact relationship between strata and faults, F3 and F4may also faulted the upper brownish yellow sandy clay layer, but the layer was eroded due to later denudation. Therefore, fault F1, F2, F3 and F4 represent the second event. Combined with the analysis of fault scarps with a height of 2~2.5m and clear valley landform in the slope near the fault, it is estimated that the time of the second paleoearthquake event is about 600 years ago, and the magnitude could reach 7. The trench at Gaichang reveals that the seismic wedge, soft sedimentary structure deformation and the medium fine sand uplift(sand vein)and other ancient seismic phenomena are well developed near the fault scarp. All these phenomena are just developed below the fault scarp. The vertical dislocation of the strata on both sides of the seismic wedge is 35cm, and 14C ages of the misinterpreted peat clay are(36 900±350)a BP and(28 330±160)a BP, respectively, so, the occurrence time of this earthquake event is estimated to be about 28 000a BP. If the fault scarp with a height of 2m was formed during this ancient earthquake, and considering the 0.35m vertical offset revealed by the trench, the magnitude of this ancient earthquake could reach 7.The Matoushui trench revealed three faults, which not only indicated the obvious activity of the faults in late Pleistocene to Holocene, but also revealed two paleoseismic events. Among them, the OSL age of the faulted sand layer by fault F1 is(21.54±1.33)ka, which represents a paleoearthquake event of 20 000 years ago. The faulted strata by fault F2 and F3 are similar, which represent another earthquake event. The 14C dating results show that the age of the latest faulted strata is(638±40)Cal a BP, accordingly, it is estimated that the second earthquake time is about 600 years ago. A clear and straight fault trough with a width of several ten meters and a length of 4km is developed from Meiciping to Matoushui. Within the fault trough, there are fault scarps with different heights and good continuity, the height of which is generally 3~5m, the lowest is 2~3m, and the highest is 8~10m. Tracing south along this line, the eastern margin of Yueliangping Basin shows a fault scarp about 5m high. After that, it extends to Luoguoqing, and again appears as a straight and clear fault scarp several meters high. In addition, in the 2km long foothills between Hongxing and Luoguoping, there are huge rolling stones with diameters of 2~5m scattered everywhere, the maximum diameter of which is about 10m, implying a huge earthquake collapse occurred here. According to the length, height, width and dislocation of the rupture zone, and combined with the experience of Yiliang M≥7 earthquake and Myanmar Dongxu M7.3 earthquake, this earthquake magnitude is considered to be ≥7.
The Zhaotong-Ludian Fault zone, composed mainly of three right-step en echelon faults, namely, the Zhaotong-Ludian Fault, the Sayuhe Fault and the Longshu Fault, strikes 40°~60° on the whole, with the Sayuhe Fault and the Longshu Fault dipping SE and the Zhaotong-Ludian Fault dipping NW, and they all together constitute a complicated thrust fault system. Based on years of field investigation results of geology and geomorphography, we elaborate the late Quaternary active features, the geological and geomorphic evidences of the latest activity of the Zhaotong-Ludian Faults. Our observation shows that: the late Cenozoic basins along the Zhaotong-Luian Fault zone are obviously dominated by the fault; there are many neo-active fault landforms, such as, flat and straight fault troughs, directional aligned fault facets and fault scarps, and the upper Pleistocene to Holocene strata are offset by the fault. The fault zone has been active since the late Quaternary. For example, the fault at Daqiaobian dislocated a set of strata of the Pliocene, and middle to upper Pleistocene, with an apparently reverse character. The fault trending NE is developed in the Holocene diluvium with oblique striation on the fault plane at Guangming Village. Deposits with an OSL age of(23.4±1.8)ka BP on T2 terrace of a small river near Beizha town was offset by the fault. There is a fault scarp trending NE 40°, 0.5~2.0m in height, on the first terrace of the Longshu River near the Longshu Village. Several Quaternary faults are revealed by the trench which offset the late Pleistocene to Holocene strata and there are three poleo-earthquake events discovered in the trench. At Yanjiao Village the gravel layer has risen steeply and is aligned in a line because of squeezing effect of the fault; the rivers and ridges nearby are synchronously offset dextrally up to 30~40m. The fault zone is dominated by reverse faulting with a small amount of right-lateral motion. Besides, there are some NW-trending faults interweaving with the NE-trending fault zone, some of which are active since late Quaternary as well, and they are the conjugate structures with the NE-trending faults. Surface deformation, such as NE- and NW-trending ground fissures and reverse scarp landforms, has been generated in the epicenter area of the 2014 Ludian M6.5 earthquake, the distribution of which is in consistence with the NE- and NW-trending faults. Because of far-field deformation response and energy exchange and transfer between blocks, the Liangshan active sub-block formed on the east of the Sichuan-Yunnan block, and the Zhaotong-Ludian Fault zone lies in the forefront of the SE movement of this sub-block. On account of its distinct location and its complicated geometric structure, the Zhaotong-Ludian Fault zone is one of main carriers of the tectonic deformation of the Liangshan active sub-block to absorb and accommodate the strains produced by the block's SE movement, and is the southern boundary of the Liangshan sub-block. From the point of view of the regional tectonic positions and the kinematic characteristics, the relation of Zhaotong-Ludian Fault zone to the Liangshan active sub-block is exactly as the relation of the Longmanshan Faults to Bayan Har block. Consequently, the Zhaotong-Ludian Fault zone has an important significance in the division of active block boundaries and the regional tectonic framework, and meanwhile, it is also an important seismogenic structure in the northeastern Yunnan.