Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
STUDY ON PALEO-SEISMIC EVENTS IN TRENCHES OF THE EASTERN QIULITAGE ANTICLINAL BELT
ZHANG Ling, YANG Xiao-ping, LI Sheng-qiang, HUANG Wei-liang, YANG Hai-bo
SEISMOLOGY AND GEOLOGY    2020, 42 (5): 1039-1057.   DOI: 10.3969/j.issn.0253-4967.2020.05.002
Abstract723)   HTML    PDF(pc) (11903KB)(261)       Save
In response to the ongoing far-field effects of the India-Eurasia collision, the Tianshan Mountains experience rapid NS convergence, and most of the present N-S shortening is absorbed along the southern and northern edges. The resultant frequent large earthquakes have inspired many scientists to explore the neotectonic activity of the Tianshan Mountains. The eastern Qiulitage anticlinal belt located in the Kuqa depression, on the southern piedmont of the Tianshan Mountains, is a typical blind fault-related fold. The Kuqa M7$\frac{1}{4}$ earthquake in 1949 as typical folding earthquake once occurred on the northern limb of the eastern segment of the Qiulitage anticline, and the epicenter was near the Village of Kang which is sparsely populated. This earthquake is a typical folding earthquake whose dominant fault did not thrust onto the earth surface. Although many tectonic-induced scarps and deformed Quaternary strata have been reported, there are still no direct evidences for the surface ruptures and corresponding causative faults of this earthquake at present. And systematic understanding of paleoseismic events in Qiulitage area is also limited by the lack of relevant chronological researches.
We conducted 1︰50 000 scale geological mapping in the Qiulitage anticline area. The local surface geological characteristics are investigated based on interpretation of Google Earth image and confirmation in the field. Together with interpreted subsurface structure by petroleum seismic reflection profiles, the relationship between the active faults thrust on the surface, low-dip-angle decollement faults in deep, and fold deformation are subsequently qualitatively analyzed. In this study, the active faults which have thrust to the surface and generated fault scarps are focused on.
Totally five trenches were chosen and cleared up, two of which are located on the southern limb of the eastern Qiulitage anticline and the others are on its northern limb. And all excavation sites are situated on fresh fault scarps. We carefully interpreted different characteristics of tectonic deformation and sedimentary process which are correlated with paleo-seismic events from trenches. According to the OSL(Optically Stimulated Luminescence)and 14C dating results, a reliable chronological framework for the deformed stratigraphic sequences was established. Based on the classic successive limiting method, six paleoseismic events were finally constrained.
Some of these interpreted paleo-seismic events produced surface ruptures on the breakthrough faults simultaneously on the southern and northern limbs of the Qiulitage anticline, and others only caused local surface ruptures on its northern limb. In a broad sense, the surface ruptures caused by these paleoseismic events have similar characteristics to those which are popular among the low-dip-angle thrust faults on the southern piedmont of the Tianshan Mountains. And the two common phenomena are that multiple ruptures may occur a single fault and multiple faults may rupture simultaneously. We speculate that only when the displacement of master faults at depth is big enough, multiple shallow secondary faults can be triggered at the same time. Conversely, only one fault is active at one time. In other words, constrained by the length and displacement of dominant faults, not all paloseismic events can cause surface ruptures on the northern and southern limbs of the Qiulitage anticline at the same time.
The revealed paleoearthquakes may have a clustering feature since ~7.4ka. They behaved as follows: 1)Three events occurred during 5.7~7.4ka. 2)one event occurred during 3.3~4.7ka. 3)the latest cluster of events may be marked by the 1949 MW7$\frac{1}{4}$ Kuqa earthquake. Thus, the earthquake sequences have a recurrence period of about 2.5~4ka.
Significantly, the incompleteness of the paloseismic events recorded in trenches and the quality and intrinsic error of the OSL dating samples can mislead judgments. It is inevitable that the time of paloseismic event cannot be constrained strictly. In our research area, because of the lack of seismic events between event E5 and event E6(7.25~19.1ka), there is a gap in seismic event records for up to~11.85ka. However, our result offers a relatively systemic event sequence to fill the gap in studies on paleoseismicity in this area. Whether there will be a strong shock after the 1949 MW7$\frac{1}{4}$ Kuqa earthquake remains to be further studied in detail.
Reference | Related Articles | Metrics
THE LATE QUATERNARY ACTIVITY CHARACTERISTICS OF THE STRIKE-SLIP FAULTS IN THE TIANSHAN OROGENIC BELT: A CASE STUDY OF THE KAIDUHE FAULT
HUANG Wei-liang, YANG Xiao-ping, LI Sheng-qiang, YANG Hai-bo
SEISMOLOGY AND GEOLOGY    2018, 40 (5): 1040-1058.   DOI: 10.3969/j.issn.0253-4967.2018.05.006
Abstract671)   HTML    PDF(pc) (8615KB)(248)       Save
As the most active intracontinental orogenic belt in the world, the Tianshan orogenic belt has complex and diverse internal structural deformation patterns, and among them, the particularly striking is the linear straight U-type valley landscapes which cut inside the mountains by multiple NW-SE and ENE-WSW strike-slip faults. Many of the modern strong earthquakes in Tianshan orogenic belt are closely related to these strike-slip faults. Therefore, it is important to elaborate the activity characteristics of these faults to understand the deformation process inside the Tianshan Mountains belt. This paper focuses on one of the NW-SE right-lateral strike-slip fault (the Kaiduhe Fault), which lies inside the southeastern Tianshan. Typical offset landforms and scarp lineaments on the western segment of the Kaiduhe Fault can be used to study the activity characteristics and strike-slip rate. In particular, the fault cuts through the late Quaternary alluvial fans and a series of river gullies were right-laterally faulted, producing dextral offsets ranging from 3 to 248m. A digital elevation model (DEM)with resolution of 0.25m was established by using multi-angle photogrammetry technique to stripe about 12km linear tectonic landforms along the Kaiduhe Fault. Geological and geomorphic mapping in DEM with 22 high-resolution dextral offset measurements reveals that the dextral offsets can be divide into four groups of 3.5m, 7.0m, 11.8m and 14.5m. It is presumed from the approximately uniformly-spaced offsets that the coseismic offset was 3~4m. In addition, the exposure age of an older alluvial fan surface was about 235.7ka by in situ 10Be terrestrial cosmogenic nuclide method. Combining the exposure ages and the maximum dextral offset of 248m, we found that the strike-slip rate of the Kaiduhe Fault is about 1mm/a. It is found by this study that the Kaiduhe Fault plays an important role in regulating SN compression deformation within Tianshan Mountains, and it should also be the main stress-strain accumulation area which has the risk of occurrence of strong earthquake.
Reference | Related Articles | Metrics
HOLOCENE SLIP RATE AND EARTHQUAKE HAZARD OF THE NORTH-EDGE FAULT OF THE YANQI BASIN, SOUTHEASTERN TIAN SHAN, CHINA
HUANG Wei-liang, YANG Xiao-ping, LI Sheng-qiang, YANG Hai-bo
SEISMOLOGY AND GEOLOGY    2018, 40 (1): 186-203.   DOI: 10.3969/j.issn.0253-4967.2018.01.014
Abstract661)   HTML    PDF(pc) (6604KB)(442)       Save
The Tian Shan Mountains is an active orogen in the continent. Previous studies on its tectonic deformation focus on the expanding fronts to basins on either side, while little work has been done on its interiors. This work studied the north-edge fault of the Yanqi Basin on the southeastern flank of Tian Shan. Typical offset landforms, and lineaments of scarps on the eastern segment of this fault were used to constrain the vertical displacement and shortening rates. Geological and geomorphic mapping in conjunction with high-resolution GPS differential measurement reveals that the vertical offsets can be divided into three groups of 1.9m, 2.4m and 3.0m, and the coseismic vertical offset was estimated as 0.5~0.6m. In situ 10Be terrestrial cosmogenic nuclide dating of three big boulders capping the regional geomorphic surface that preserved 3.0m vertical offset suggests that the surfaces were exposed at~5ka. Meanwhile, the lacustrine sediments from Bosten Lake within the Yanqi Basin suggest climate change during cooling-warming transitions was also at~5ka. The climate, therefore, controlled creation and abandonment of geomorphic surfaces in southern piedmont of Tian Shan. Combining the exposure ages and vertical offsets, we inferred that the east section of the north-edge fault in the Yanqi Basin has a dip slip rate 0.6~0.7mm/a,~0.5mm/a of vertical slip and~0.4mm/a of shortening since 5ka. Based on calculation of earthquake moment, we estimated that this fault is capable of generating M7.5 earthquakes in the future. This study provides new data for further understanding tectonic deformation of Tian Shan and is useful in seismic hazard assessment of this area.
Reference | Related Articles | Metrics
ACTIVE FAULTS AND THEIR FORMATION MECHANISM IN THE EAST SEGMENT OF QIULITAGE ANTICLINE BELT, KUQA DEPRESSION
LI Sheng-qiang, ZHANG Ling, YANG Xiao-ping, HUANG Wei-liang, HUANG Xiong-nan, YANG Hai-bo
SEISMOLOGY AND GEOLOGY    2016, 38 (2): 223-239.   DOI: 10.3969/j.issn.0253-4967.2016.02.001
Abstract693)      PDF(pc) (12955KB)(347)       Save

Based on geological and geomorphologic characteristics of the surface faults acquired by field investigations and subsurface structure from petroleum seismic profiles, this paper analyzes the distribution, activity and formation mechanism of the surface faults in the east segment of Qiulitage anticline belt which lies east of the Yanshuigou River and consists of two sub-anticlines:Kuchetawu anticline and east Qiulitage anticline. The fault lying in the core of Kuchetawu anticline is an extension branch of the detachment fault developed in Paleogene salt layer, and evidence shows it is a late Pleistocene fault. The faults developed in the fold hinge in front of the Kuchetawu anticline in a parallel group and having a discontinuous distribution are fold-accommodation faults controlled by local compressive stress. However, trenching confirms that these fold-accommodation faults have been active since the late Holocene and have recorded part of paleoearthquakes in the active folding zone. The fault developed in the south limb near the core of eastern Qiulitage anticline is a low-angle thrust fault, likely a branch of the upper ramp which controls the development of the eastern Qiulitage anticline. The faults lying in the south limb of eastern Qiulitage anticline are shear-thrust faults, which are developed in the steeply dipping frontal limb of the fault-propagation folds, and also characterized by group occurrence and discontinuous distribution. Several fault outcrops are discovered near Gekuluke, in which the Holocene diluvial fans are dislocated by these faults, and trench shows they have recorded several paleoearthquakes. The surface anticlines of rapid growth and associated accommodation faults are the manifestations of the deep faults that experienced complex folding deformation and propagated upward to the near surface, serving as an indicator of faulting at depth. The fold-accommodation faults are merely local deformation during the folding process, which are indirectly related with the deep faults that control the growth of folds. The displacement and slip rate of these surface faults cannot match the kinematics parameters of the deeper fault, which controls the development of the active folding. However, these active fold-accommodation faults can partly record paleoearthquakes taking place in the active folding zone.

Reference | Related Articles | Metrics
CONTRIBUTIONS OF FOLD-ACCOMMODATION FAULTS IN FOLD SCARPS TO THE CALCULATION OF SHORTENING INCREMENT: A CASE STUDY FROM QIULITAGE ANTICLINE (SOUTHERN TIAN SHAN, CHINA)
ZHANG Ling, YANG Xiao-ping, HUANG Wei-liang, LI Sheng-qiang
SEISMOLOGY AND GEOLOGY    2015, 37 (3): 697-708.   DOI: 10.3969/j.issn.0253-4967.2015.03.003
Abstract666)      PDF(pc) (5255KB)(778)       Save

Fold-accommodation faults, secondary faults subordinated to the principal fold, are of much significance to accommodate strain variation in different parts of the rock during the evolution of folding. They are generally found in groups. And each of them has limited displacement and does not connect with the main detachment. After the geological survey in the East Qiulitage anticline zone, we find that the secondary faults accompanying fold scarps in this area are out-of-syncline thrusts and also give an instance of secondary faults occurring later than the folding. The fact that the secondary faults in fold scarps force the hanging wall to move upward relative to the footwall not only makes the terrace tilting and increases the slope of fold scarps, but also affects the authenticity in calculating regional shortening increment. The theoretical results show that if we do not consider the increased fold scarps height influenced by the secondary faults, the shortening increment is 51.42m. Otherwise, the value will be 45.23m and the difference between them is 6.19m. Because the deviation is 13.7% of the total shortening increment, the contributions of fold-accommodation faults to the calculation should not be ignored. The fold scarps in the northern and southern flanks of the East Qiultiage anticline depend on same bedrock type and formation mechanism. But three levels of fold scarps were found in the cross section of less than 300 meters in horizontal distance. This fact indicates that the active kink band of northern part is more closed because of higher compressive stress and faster lifting, which produce a large number of secondary faults in the fold scarps only in the northern flank. Therefore, the study of secondary faults is of significance in understanding of regional tectonic evolution and interaction between folds and faults. But there still exist many problems: 1)Limited by the observing scope, discontinuous distribution of secondary faults and variations of displacement along fault, we may underestimate the influence of secondary faults and the theoretical result should be the minimum. 2)What is the quantitative relationship among the increased height of fold scarps, the transfer slip and the dip of secondary faults?3)If secondary faults only grow in active kink band, how will they affect fold scarp?More examples of fold-accommodation faults are needed for further research.

Reference | Related Articles | Metrics
LATE PLEISTOCENE SHORTENING RATE ON THE NORTHERN MARGIN OF YANQI BASIN, SOUTHEASTERN TIAN SHAN, NW CHINA
HUANG Wei-liang, YANG Xiao-ping, LI An, ZHANG Ling, LI Sheng-qiang, YANG Hai-bo
SEISMOLOGY AND GEOLOGY    2015, 37 (3): 675-696.   DOI: 10.3969/j.issn.0253-4967.2015.03.002
Abstract904)      PDF(pc) (7567KB)(602)       Save

How strain is distributed and partitioned on individual faults and folds on the margins of intermontane basins remains poorly understood. The Haermodun(Ha) anticline, located along the northern margin of the Yanqi Basin on the southeastern flank of the Tian Shan, preserves flights of passively deformed alluvial terraces. These terraces cross the active anticline and can be used to constrain local crustal shortening and uplift rates. Geologic and geomorphic mapping, in conjunction with high-resolution dGPS topographic surveys, reveal that the terrace surfaces are perpendicular to the fold's strike, and display increased rotation with age, implying that the anticline has grown by progressive limb rotation. We combine 10Be terrestrial cosmogenic nuclide(TCN) depth profile dating and optically stimulated luminescence(OSL) dating to develop a new chronology for the terraces along the Huangshui He since 550ka. Our in situ 10Be dating of fluvial gravels capping strath terraces suggests a relationship between the formation and abandonment of the terraces and glacial climate cycles since the middle-late Pleistocene. These data indicate that the formation of the four terraces occurred at ~550, ~430, ~350, and~60ka. We suggest that episodes of aggradation were facilitated by high sediment supply during glacial periods, followed by subsequent incision that led to abandonment of these terraces during deglaciation. Combining uplift and shortening distance with ages, we found the vertical uplift gradually decreased from 0.43 to 0.11mm/a, whereas the shortening rate was constant at ~0.3mm/a since the anticline began to grow. The shortening rates of the Ha anticline from geomorphology agree with current GPS measurements, and highlight the importance of determining slip rates for individual faults in order to resolve patterns of strain distribution across intermontane belts.

Reference | Related Articles | Metrics