Based on geological and geomorphologic characteristics of the surface faults acquired by field investigations and subsurface structure from petroleum seismic profiles, this paper analyzes the distribution, activity and formation mechanism of the surface faults in the east segment of Qiulitage anticline belt which lies east of the Yanshuigou River and consists of two sub-anticlines:Kuchetawu anticline and east Qiulitage anticline. The fault lying in the core of Kuchetawu anticline is an extension branch of the detachment fault developed in Paleogene salt layer, and evidence shows it is a late Pleistocene fault. The faults developed in the fold hinge in front of the Kuchetawu anticline in a parallel group and having a discontinuous distribution are fold-accommodation faults controlled by local compressive stress. However, trenching confirms that these fold-accommodation faults have been active since the late Holocene and have recorded part of paleoearthquakes in the active folding zone. The fault developed in the south limb near the core of eastern Qiulitage anticline is a low-angle thrust fault, likely a branch of the upper ramp which controls the development of the eastern Qiulitage anticline. The faults lying in the south limb of eastern Qiulitage anticline are shear-thrust faults, which are developed in the steeply dipping frontal limb of the fault-propagation folds, and also characterized by group occurrence and discontinuous distribution. Several fault outcrops are discovered near Gekuluke, in which the Holocene diluvial fans are dislocated by these faults, and trench shows they have recorded several paleoearthquakes. The surface anticlines of rapid growth and associated accommodation faults are the manifestations of the deep faults that experienced complex folding deformation and propagated upward to the near surface, serving as an indicator of faulting at depth. The fold-accommodation faults are merely local deformation during the folding process, which are indirectly related with the deep faults that control the growth of folds. The displacement and slip rate of these surface faults cannot match the kinematics parameters of the deeper fault, which controls the development of the active folding. However, these active fold-accommodation faults can partly record paleoearthquakes taking place in the active folding zone.
Fold-accommodation faults, secondary faults subordinated to the principal fold, are of much significance to accommodate strain variation in different parts of the rock during the evolution of folding. They are generally found in groups. And each of them has limited displacement and does not connect with the main detachment. After the geological survey in the East Qiulitage anticline zone, we find that the secondary faults accompanying fold scarps in this area are out-of-syncline thrusts and also give an instance of secondary faults occurring later than the folding. The fact that the secondary faults in fold scarps force the hanging wall to move upward relative to the footwall not only makes the terrace tilting and increases the slope of fold scarps, but also affects the authenticity in calculating regional shortening increment. The theoretical results show that if we do not consider the increased fold scarps height influenced by the secondary faults, the shortening increment is 51.42m. Otherwise, the value will be 45.23m and the difference between them is 6.19m. Because the deviation is 13.7% of the total shortening increment, the contributions of fold-accommodation faults to the calculation should not be ignored. The fold scarps in the northern and southern flanks of the East Qiultiage anticline depend on same bedrock type and formation mechanism. But three levels of fold scarps were found in the cross section of less than 300 meters in horizontal distance. This fact indicates that the active kink band of northern part is more closed because of higher compressive stress and faster lifting, which produce a large number of secondary faults in the fold scarps only in the northern flank. Therefore, the study of secondary faults is of significance in understanding of regional tectonic evolution and interaction between folds and faults. But there still exist many problems: 1)Limited by the observing scope, discontinuous distribution of secondary faults and variations of displacement along fault, we may underestimate the influence of secondary faults and the theoretical result should be the minimum. 2)What is the quantitative relationship among the increased height of fold scarps, the transfer slip and the dip of secondary faults?3)If secondary faults only grow in active kink band, how will they affect fold scarp?More examples of fold-accommodation faults are needed for further research.
How strain is distributed and partitioned on individual faults and folds on the margins of intermontane basins remains poorly understood. The Haermodun(Ha) anticline, located along the northern margin of the Yanqi Basin on the southeastern flank of the Tian Shan, preserves flights of passively deformed alluvial terraces. These terraces cross the active anticline and can be used to constrain local crustal shortening and uplift rates. Geologic and geomorphic mapping, in conjunction with high-resolution dGPS topographic surveys, reveal that the terrace surfaces are perpendicular to the fold's strike, and display increased rotation with age, implying that the anticline has grown by progressive limb rotation. We combine 10Be terrestrial cosmogenic nuclide(TCN) depth profile dating and optically stimulated luminescence(OSL) dating to develop a new chronology for the terraces along the Huangshui He since 550ka. Our in situ 10Be dating of fluvial gravels capping strath terraces suggests a relationship between the formation and abandonment of the terraces and glacial climate cycles since the middle-late Pleistocene. These data indicate that the formation of the four terraces occurred at ~550, ~430, ~350, and~60ka. We suggest that episodes of aggradation were facilitated by high sediment supply during glacial periods, followed by subsequent incision that led to abandonment of these terraces during deglaciation. Combining uplift and shortening distance with ages, we found the vertical uplift gradually decreased from 0.43 to 0.11mm/a, whereas the shortening rate was constant at ~0.3mm/a since the anticline began to grow. The shortening rates of the Ha anticline from geomorphology agree with current GPS measurements, and highlight the importance of determining slip rates for individual faults in order to resolve patterns of strain distribution across intermontane belts.