Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
THE SPATIO-TEMPORAL EVOLUTION OF THE FAULT DEFOR-MATION DURING THE META-INSTABILITY QUASI-DYNAMIC PHASE AND THE COSEISMIC STAGE: A VIEW FROM LABORATORY
LI Shi-nian, MA Jin, JI Yun-tao, GUO Yan-shuang, LIU Li-qiang
SEISMOLOGY AND GEOLOGY    2021, 43 (1): 1-19.   DOI: 10.3969/j.issn.0253-4967.2021.01.001
Abstract460)   HTML    PDF(pc) (6039KB)(434)       Save
A crucial question in earthquake science is how earthquakes start. Field and experimental observations show a short period exists between the fault reaching peak stress and the coseismic event. Therefore, it is of fundamental significance to capture the spatio-temporal evolution of a fault’s deformation during this premonitory stage. It can help us understand how the rupture of an earthquake initiates and also provide precursory information. Stick-slip events or lab quakes can be produced in controlled conditions to mimic earthquakes in nature. In previous studies, we proposed the fault meta-instability model focusing on depicting this stage(hereinafter referred to as the meta-instability stage)and interpreting the transition from energy/stress accumulation to energy/stress release. We further divided the meta-instability stage into two substages, i.e., the quasi-static phase and a quasi-dynamic phase, corresponding to slow energy release and irreversible energy release elevated rate.
However, how the meta-instability stage can facilitate the final failure remains puzzled. In contrast, the meta-instability stage exhibits slow and mild deformation, while the coseismic stage is fast and violent. In order to bridge these two processes, it is essential to record the complete dynamic process of stick-slip events, including the premonitory and coseismic stage. Thus, the data acquisition system required must feature a high signal-noise ratio, high frequency, continuous recording, and dense instrumentation. In 2016, we developed an ultra-high-speed, multi-channel and continuous recording data acquisition system for deformation measurement(UltraHiDAM). UltraHiDAM has 64 channels, 16-bit resolution, and 4MHz sampling frequency, and can perform parallel continuous data acquisition. It is able to record strain signals and acoustic emissions continuously and synchronously at a high sampling frequency up to 4MHz for as long as a few hours. To our best knowledge, it is the first system that is capable of doing so.
Based on this system, we conducted a series of stick-slip experiments. We recorded the entire deformation process of the laboratory earthquake cycles, including the relatively slow deformation in the quasi-static phase(several seconds before the stress drop), the relative fast deformation in the quasi-dynamic phase(a few microns before the stress drop), and the complete process of the transient coseismic slip. High frequency continuous synchronous sampling allows us to reveal as many details as possible of unstable sliding transient processes, and analyze mechanical problems related to the seismic source.
We report results of stick-slip experiments using saw-cut bare-surface granodiorite samples. The main findings of this paper are summarized as follows: First, the substages can be further recognized based on the local deformation characteristics(Table 2). Second, strain and stress start to localize before the quasi-static phase; such localization’s acceleration indicates the whole fault has entered the quasi-static phase. Third, the strain field during the quasi-dynamic phase is characterized by a wave-like acceleration and reciprocating propagation(Fig. 9). Fourth, there is a short preparation period for each sub-stage of the quasi-dynamic process(Fig. 6). The existence of such preparation periods may help the imminent earthquake prediction. Finally, even for the stick-slip events captured on a simplified plane laboratory fault, the coseismic process can be multiple rupture events, each event has its own AE waveform that is distinguishable in time(Fig. 8).
The implications are that there is indeed precursory information during the different substages before the coseismic event, most of which are associated with the localization and propagation of strain and stress. An earthquake source’s actual mechanical process can be complex in terms of multiple stress drops and ruptures.
Reference | Related Articles | Metrics
A SUPER-DYNAMIC DEFORMATION MEASUREMENT SYSTEM WITH LONG-TIME PARALLEL CONTINUOUS ACQUISITION
LI Shi-nian, QI Wen-bo, LIU Li-qiang
SEISMOLOGY AND GEOLOGY    2019, 41 (6): 1529-1538.   DOI: 10.3969/j.issn.0253-4967.2019.06.014
Abstract330)   HTML    PDF(pc) (2191KB)(297)       Save
In the simulation experiments of earthquakes in laboratory, the instability slip or rupture events are obtained through steady state loading to simulate earthquake processes. In the experiments, steady-state deformation and unstable sliding occur alternately. It is hard to determine the origin time and duration of the instability event of fault, and there may be many instability events in one experiment. Therefore, in order to ensure that sufficient data is obtained at the extremely short instability moment to analyze the mechanical process of the earthquake source, the data acquisition system is required to continuously collect data at high-speed from the beginning of the experiment until the end, and the lasting time can be more than ten hours, so it requires huge storage space. Although the upper frequency limit of the instability signal is unknown exactly, but the previous experiments have shown that the frequency of the signal will reach hundred to several kilohertz, so the sampling frequency of the data acquisition should be above megahertz. In this case of long-time continuous high-frequency data acquisition, it is still necessary to maintain a high signal-to-noise ratio. Furthermore, previous studies have proved that the source mechanics field has a complex spatial structure, which is difficult to describe with a few measuring points, and it is necessary to perform simultaneous measurements of the source mechanics field for dozens or more measuring points. The combination of long-term continuous recording, high-resolution high-frequency sampling and multi-point simultaneous measurement poses a huge challenge to the technical indicators of the observing system. With the method for composing distributed synchronous acquisition machine group by using multiple high-resolution high-frequency sampling computers, a super dynamic deformation measurement system of high signal-to-noise ratio, which features 64-channel, 16-bit resolution, 4MHz sampling frequency, and parallel continuous acquisition with tens of hours was developed. This system can realize the synchronous acquisition of various signals, such as strain, acoustic emission, electromagnetic waves and displacement, so it is convenient for analyzing the conversion relationship between various physical quantities.
Reference | Related Articles | Metrics