Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
SEISMOGENIC FAULT AND COSEISMIC SURFACE DEFORMATION OF THE MADUO MS7.4 EARTHQUAKE IN QINGHAI, CHINA: A QUICK REPORT
LI Zhi-min, LI Wen-qiao, LI Tao, XU Yue-ren, SU Peng, GUO Peng, SUN Hao-yue, HA Guang-hao, CHEN Gui-hua, YUAN Zhao-de, LI Zhong-wu, LI Xin, YANG Li-chen, MA Zhen, YAO Sheng-hai, XIONG Ren-wei, ZHANG Yan-bo, GAI Hai-long, YIN Xiang, XU Wei-yang, DONG Jin-yuan
SEISMOLOGY AND GEOLOGY    2021, 43 (3): 722-737.   DOI: 10.3969/j.issn.0253-4967.2021.03.016
Abstract1235)   HTML    PDF(pc) (18089KB)(667)       Save
At 02:04 a.m. on May 22, 2021, a MS7.4 earthquake occurred in the Maduo County, Qinghai Province, China. Its epicenter is located within the Bayan Har block in the north-central Tibetan plateau, approximately 70km south of the eastern Kunlun fault system that defines the northern boundary of the block. In order to constrain the seismogenic fault and characterize the co-seismic surface ruptures of this earthquake, field investigations were conducted immediately after the earthquake, combined with analyses of the focal parameters, aftershock distribution, and InSAR inversion of this earthquake.
This preliminary study finds that the seismogenic fault of the Maduo MS7.4 earthquake is the Jiangcuo segment of the Kunlunshankou-Jiangcuo Fault, which is an active NW-striking and left-lateral strike-slip fault. The total length of the co-seismic surface ruptures is approximately 160km. Multiple rupture patterns exist, mainly including linear shear fractures, obliquely distributed tensional and tensional-shear fractures, pressure ridges, and pull-apart basins. The earthquake also induced a large number of liquefaction structures and landslides in valleys and marshlands.
Based on strike variation and along-strike discontinuity due to the development of step-overs, the coseismic surface rupture zone can be subdivided into four segments, namely the Elinghu South, Huanghexiang, Dongcaoarlong, and Changmahexiang segments. The surface ruptures are quite continuous and prominent along the Elinghu south segment, western portion of the Huanghexiang segment, central portion of the Dongcaoarlong segment, and the Huanghexiang segment. Comparatively, coseismic surface ruptures of other portions are discontinuous. The coseismic strike-slip displacement is roughly determined to be 1~2m based on the displaced gullies, trails, and the width of cracks at releasing step-overs.
Reference | Related Articles | Metrics
STUDIES ON NEW ACTIVITY OF LINTAN-DANGCHANG FAULT, WEST QINLING
ZHANG Bo, TIAN Qin-jian, WANG Ai-guo, LI Wen-qiao, XU Yue-ren, GAO Ze-min
SEISMOLOGY AND GEOLOGY    2021, 43 (1): 72-91.   DOI: 10.3969/j.issn.0253-4967.2021.01.005
Abstract802)   HTML    PDF(pc) (24979KB)(578)       Save
Located in the intervening zone between Tibetan plateau and surrounding blocks, the Lintan-Dangchang Fault(LDF)is characterized by north-protruding arc-shape, complex structures and intense fault activity. Quantitative studies on its new activity play a key role in searching the seismogenic mechanism, building regional tectonic model and understanding the tectonic interaction between Tibetan plateau and surrounding blocks. The LDF has strong neotectonic activities, and moderate-strong earthquakes occur frequently(three M6~7 earthquakes occurred in the past 500 years, including the July 22nd, 2013, Minxian-Zhangxian MS6.6 earthquake), but the new activity of the fault is poorly known, the geological and geomorphological evidence of the Holocene activity has not been reported yet. Based on remote sensing interpretation and macro-landform analysis, this paper studies the long-term performance of LDF. Based on the study of fault activity, unmanned aircraft vehicle photogrammetry and differential GPS, radiocarbon dating, etc., the latest activity of LDF is quantitatively studied. Then the research results, historical strong earthquakes and small earthquake distribution are comprehensively analyzed for studying the seismogenic mechanism and constructing regional tectonic models. The results are as follows: Firstly, the fault geometry is complex and there are many branch faults. According to the convergence degree of the fault trace and the fault-controlled macroscopic topography, the LDF is divided into three segments: the west, the middle and the east. The west segment contains two fault branches(the south and the north)and the south Hezuo Fault. The south branch of the west segment mainly dominates the Jicang Neogene Basin, and the south Hezuo Fault controls the south boundary of Hezuo Basin. The middle segment has more convergent and stable trace, consisting of the main fault and south Hezuo Fault, and these faults separate the main planation surface of the Tibetan plateau and Lintan Basin surface geologically and geomorphologically. The fault traces in the east segment are sparsely distributed, and the terrain is characterized by hundreds of meters of uplifts. The branch faults include the main fault, Hetuo Fault, Muzhailing Fault and Bolinkou Fault, each controlling differential topography. Secondly, the motion property of the LDF is mainly left-lateral strike-slip, with a relative smaller portion of vertical slip. The left-lateral strike-slip offset the Taohe River and its tributaries, gullies and ridges synchronously, and the maximum left-lateral displacement of the tributary of Taohe River can reach 3km. Meanwhile, the pull-apart basins and push-up ridges associated with the left-lateral fault slip are also developed in the fault zone. The performance of vertical slip includes tilting of the main planation surface, vertical offsets of the boundary and interior of Neogene basin and hundred meter-scale differential topography. The vertical offset of the Neogene is 300~500m. Thirdly, one fault profile was newly discovered in Gongqia Village, revealing a complete sequence of pre-earthquake-coseismic-postseismic deposition, and this event was constrained by the radiocarbon ages of pre-earthquake and post-earthquake deposition. The event was constrained to be 2090~7745aBP(confidence 2σ), which for the first time confirmed the Holocene activity of the fault. Fourthly, a gully with two terraces at least on the west side of Zhuangzi Village in the east segment of the main fault retains a typical faulted landform. The T2/T1 terrace riser of the gully has a left-handed dislocation of 6.3~11.8m, and the scarp height on terrace T2 is 0.4~0.7m, the radiocarbon age of the terrace T2 is7170~7310aBP, so the derived left-lateral strike-slip rate since the early Holocene in the east segment of the main fault is 0.86~1.65mm/a, and the vertical slip rate is 0.05~0.10mm/a. The derived slip rates are in line with the regional tectonic model proposed by the predecessors, so the LDF plays an important role in the internal deformation of the West Qinling. The clockwise rotation of the middle to east segments of the LDF acts as an obstacle to the left-lateral strike-slip motion, which inevitably leads to the redistribution and rapid release of stress, so earthquakes in the middle-east segment of the LDF are unusually frequent.
Reference | Related Articles | Metrics
ANALYSIS OF EVOLUTION OF THE RIYUESHAN FAULT SINCE LATE PLEISTOCENE USING STRUCTURAL GEOMORPHOLOGY
LI Zhi-min, LI Wen-qiao, YIN Xiang, HUANG Shuai-tang, ZHANG Jun-long
SEISMOLOGY AND GEOLOGY    2019, 41 (5): 1077-1090.   DOI: 10.3969/j.issn.0253-4967.2019.05.001
Abstract704)   HTML    PDF(pc) (7655KB)(456)       Save
The northeastern margin of Tibetan plateau is an active block controlled by the eastern Kunlun fault zone, the Qilian Shan-Haiyuan fault zone, and the Altyn Tagh fault zone. It is the frontier and the sensitive area of neotectonic activity since the Cenozoic. There are widespread folds, thrust faults and stike-slip faults in the northeastern Tibetan plateau produced by the intensive tectonic deformation, indicating that this area is suffering the crustal shortening, left-lateral shear and vertical uplift. The Riyueshan Fault is one of the major faults in the dextral strike-slip faults systems, which lies between the two major large-scale left-lateral strike-slip faults, the Qilian-Haiyuan Fault and the eastern Kunlun Fault. In the process of growing and expanding of the entire Tibetan plateau, the dextral strike-slip faults play an important role in regulating the deformation and transformation between the secondary blocks. In the early Quaternary, because of the northeastward expansion of the northeastern Tibetan plateau, tectonic deformations such as NE-direction extrusion shortening, clockwise rotation, and SEE-direction extrusion occurred in the northeastern margin of the Tibetan plateau, which lead to the left-lateral slip movement of the NWW-trending major regional boundary faults. As the result, the NNW-trending faults which lie between these NWW direction faults are developed. The main geomorphic units developed within the research area are controlled by the Riyueshan Fault, formed due to the northeastward motion of the Tibet block. These geomorphic units could be classified as:Qinghai Lake Basin, Haiyan Basin, Datonghe Basin, Dezhou Basin, and the mountains developed between the basins such as the Datongshan and the Riyueshan. Paleo basins, alluvial fans, multiple levels of terraces are developed at mountain fronts. The climate variation caused the formation of the geomorphic units during the expansion period of the lakes within the northeastern Tibetan plateau. There are two levels of alluvial fans and three levels of fluvial terrace developed in the study area, the sediments of the alluvial fans and fluvial terraces formed by different sources are developed in the same period. The Riyueshan Fault connects with the NNW-trending left-lateral strike-slip north marginal Tuoleshan fault in the north, and obliquely connects with the Lajishan thrust fault in the south. The fault extends for about 180km from north to south, passing through Datonghe, Reshui coal mine, Chaka River, Tuole, Ketu and Xicha, and connecting with the Lajishan thrusts near the Kesuer Basin. The Riyueshan Fault consists of five discontinuous right-step en-echelon sub-fault segments, with a spacing of 2~3km, and pull-apart basins are formed in the stepovers.
The Riyueshan Fault is a secondary fault located in the Qaidam-Qilian active block which is controlled by the major boundary faults, such as the East Kunlun Fault and the Qilian-Haiyuan Fault. Its activity characteristics provide information of the outward expansion of the northeastern margin of Tibet. Tectonic landforms are developed along the Riyueshan Fault. Focusing on the distinct geomorphic deformation since late Pleistocene, the paper obtains the vertical displacement along the fault strike by RTK measurement method. Based on the fault growth-linkage theory, the evolution of the Riyueshan Fault and the related kinetic background are discussed. The following three conclusions are obtained:1)According to the characteristics of development of the three-stage 200km-long steep fault scarp developed in the landforms of the late Pleistocene alluvial fans and terraces, the Riyueshan Fault is divided into five segments, with the most important segment located in the third stepover(CD-3); 2)The three-stage displacement distribution pattern of the Riyueshan Fault reveals that the fault was formed by the growths and connections of multiple secondary faults and is in the second stage of fault growth and connection. With CD-3 as the boundary, the faults on the NW side continue to grow and connect; the fault activity time on the SE side is shorter, and the activity intensity is weaker; 3)The extreme value of the fault displacement distribution curve indicates the location of strain concentration and stress accumulation. With the stepover CD-3 as the boundary, the stress and strain on NW side are mainly concentrated in the middle and fault stepovers. The long-term accumulation range of stress on the SE side is relatively dispersed. The stress state may be related to the counterclockwise rotation inside the block under the compression of regional tectonic stress.
Reference | Related Articles | Metrics
NEW EVIDENCES FOR AMENDMENT OF MACRO-EPICENTER LOCATION OF 1303AD HONGTONG EARTHQUAKE
XU Yue-ren, HE Hong-lin, LI Wen-qiao, ZHANG Wei-heng, TIAN Qin-jian
SEISMOLOGY AND GEOLOGY    2018, 40 (5): 945-966.   DOI: 10.3969/j.issn.0253-4967.2018.05.001
Abstract945)   HTML    PDF(pc) (12631KB)(364)       Save
The Hongtong earthquake occurring on 25 September 1303 in both Linfen Basin (LFB)and Taiyuan Basin (TYB)in Shanxi Graben is the first M8.0 earthquake based on the Chinese literature in China mainland, 392 years later, the Linfen M7.5 earthquake occurred on 18 May 1695 in Linfen Basin with its macro-epicenter distance of only 40km south of the Hongtong earthquake. Due to their close macro-epicenter distance and shortly interval of 392a, it attracted continuous attention to the geoscientists around Southern Shanxi Graben, southeastern Orods Plate. This paper combines the historical documents and interpreting the coseismic triggered disasters in study area. The results show that:1)the number of building damaged in the southern TYB and Lingshi Uplift (LSU)during 1303 Hongtong earthquake is similar to that of the LFB, indicating that the TYB and LSU maybe suffered the same or even worse earthquake disaster losses during the 1303 Hongtong earthquake. While the 1695 Linfen earthquake is confined within the LFB and south of Hongtong County; 2)More than 11 000 loess landslides were triggered by the 1303 Hongtong earthquake event between LFB and TYB, which is consistent with the literature records. We suggested the macro-epicenter of the 1303 Hongtong earthquake should move about 60km northward from the present location (36.3°N, 111.7°E)near Hongtong County to the new location (36.8°N, 111.7°E) between Huozhou City and Lingshi County, the new macro-epicenter location can reasonably explain the large-scale centralized earthquake-triggered landslides during the event. The landslides had aggravated the severity of the loss; 3)Our result helps to understand the spatial distribution of the two strong earthquakes and the relationship between them, especially the distribution map of earthquake-induced loess landslides by 1303 Hongtong earthquake extracted using the Google Earth images, which supports the amendment of the macro-epicenter.
Reference | Related Articles | Metrics
DISTRIBUTION CHARACTERISTICS OF THE AD 1556 HUAXIAN EARTHQUAKE TRIGGERED DISASTERS AND ITS IMPLICATIONS
XU Yue-ren, ZHANG Wei-heng, LI Wen-qiao, HE Hong-lin, TIAN Qin-jian
SEISMOLOGY AND GEOLOGY    2018, 40 (4): 721-737.   DOI: 10.3969/j.issn.0253-4967.2018.04.001
Abstract986)   HTML    PDF(pc) (10912KB)(315)       Save
A complete understanding to the disasters triggered by giant earthquakes is not only crucial to effectively evaluating the reliability of existing earthquake magnitude, but also supporting the seismic hazard assessment. The great historical earthquake with estimated magnitude of M8.5 in Huaxian County on the 23rd January 1556, which caused a death toll of more than 830 000, is the most serious earthquake on the global record. But for a long time, the knowledge about the hazards of this earthquake has been limited to areas along the causative Huashan piedmont fault(HSPF) and within the Weihe Basin. In this paper, we made a study on earthquake triggered landslides of the 1556 event along but not limited to the HSPF.
Using the high-resolution satellite imagery of Google Earth for earthquake-triggered landslide interpretation, we obtained two dense loess landslides areas generated by the 1556 earthquake, which are located at the east end and west end of the HSPF. The number of the interpreted landslides is 1 515 in the west area(WA), which is near to the macro-epicentre, and 2 049 in the east area(EA), respectively. Based on the empirical relationship between the landslide volume and area, we get the estimated landslide volume of 2.85~6.40km3 of WA and EA, which is equivalent or bigger than the value of ~2.8km3 caused by Wenchuan earthquake of MW7.9 on 12th May 2008. These earthquake triggered landslides are the main cause for the death of inhabitants living in houses or loess house caves located outside of the basin, such as Weinan, Lintong, Lantian(affected by WA) and Lingbao(affected by EA). Our results can help deeply understand the distribution characteristics of coseismic disaster of the 1556 Huaxian earthquake to the south of Weihe Basin, and also provide important reference for the modification of the isoseismals.
Reference | Related Articles | Metrics
USING DEFORMED FLUVIALTERRACES OF THE QINGYIJIANG RIVER TO STUDY THE TECTONIC ACTIVITY OF THE SOUTHERN SEGMENT OF LONGMENSHAN FAULT ZONE
SU Peng, TIAN Qin-jian, LIANG Peng, LI Wen-qiao, WANG Lin
SEISMOLOGY AND GEOLOGY    2016, 38 (3): 523-545.   DOI: 10.3969/j.issn.0253-4967.2016.03.003
Abstract768)      PDF(pc) (14178KB)(597)       Save

On 20 April 2013, a destructive earthquake, the Lushan MS7.0 earthquake, occurred in the southern segment of the Longmenshan Fault zone, the eastern margin of the Tibetan plateau in Sichuan, China. This earthquake did not produce surface rupture zone, and its seismogenic structure is not clear. Due to the lack of Quaternary sediment in the southern segment of the Longmenshan fault zone and the fact that fault outcrops are not obvious, there is a shortage of data concerning the tectonic activity of this region. This paper takes the upper reaches of the Qingyijiang River as the research target, which runs through the Yanjing-Wulong Fault, Dachuan-Shuangshi Fault and Lushan Basin, with an attempt to improve the understanding of the tectonic activity of the southern segment of the Longmenshan fault zone and explore the seismogenic structure of Lushan earthquake.
In the paper, the important morphological features and tectonic evolution of this area were reviewed. Then, field sites were selected to provide profiles of different parts of the Qingyijiang River terraces, and the longitudinal profile of the terraces of the Qingyijiang River in the south segment of the Longmenshan fault zone was reconstructed based on geological interpretation of high-resolution remote sensing images, continuous differential GPS surveying along the terrace surfaces, geomorphic field evidence, and correlation of the fluvial terraces.
The deformed longitudinal profile reveals that the most active tectonics during the late Quaternary in the south segment of the Longmenshan Fault zone are the Yanjing-Wulong Fault and the Longmenshan range front anticline. The vertical thrust rate of the Yanjing-Wulong Fault is nearly 0.6~1.2mm/a in the late Quaternary. The tectonic activity of the Longmenshan range front anticline may be higher than the Yanjing-Wulong Fault. Combined with the relocations of aftershocks and other geophysical data about the Lushan earthquake, we found that the seismogenic structure of the Lushan earthquake is the range front blind thrust and the back thrust fault, and the pop-up structure between the two faults controls the surface deformation of the range front anticline.

Reference | Related Articles | Metrics
THE RESEARCH OF THE SEISMOGENIC STRUCTURE OF THE LUSHAN EARTHQUAKE BASED ON THE SYNTHESIS OF THE DEEP SEISMIC DATA AND THE SURFACE TECTONIC DEFORMATION
WANG Lin, ZHOU Qing-yun, WANG Jun, LI Wen-qiao, ZHOU Lian-qing, CHEN Han-lin, SU Peng, LIANG Peng
SEISMOLOGY AND GEOLOGY    2016, 38 (2): 458-476.   DOI: 10.3969/j.issn.0253-4967.2016.02.018
Abstract643)      PDF(pc) (10395KB)(1207)       Save

The seismogenic structure of the Lushan earthquake has remained in suspensed until now. Several faults or tectonics, including basal slipping zone, unknown blind thrust fault and piedmont buried fault, etc, are all considered as the possible seismogenic structure. This paper tries to make some new insights into this unsolved problem. Firstly, based on the data collected from the dynamic seismic stations located on the southern segment of the Longmenshan fault deployed by the Institute of Earthquake Science from 2008 to 2009 and the result of the aftershock relocation and the location of the known faults on the surface, we analyze and interpret the deep structures. Secondly, based on the terrace deformation across the main earthquake zone obtained from the dirrerential GPS meaturement of topography along the Qingyijiang River, combining with the geological interpretation of the high resolution remote sensing image and the regional geological data, we analyze the surface tectonic deformation. Furthermore, we combined the data of the deep structure and the surface deformation above to construct tectonic deformation model and research the seismogenic structure of the Lushan earthquake. Preliminarily, we think that the deformation model of the Lushan earthquake is different from that of the northern thrust segment ruptured in the Wenchuan earthquake due to the dip angle of the fault plane. On the southern segment, the main deformation is the compression of the footwall due to the nearly vertical fault plane of the frontal fault, and the new active thrust faults formed in the footwall. While on the northern segment, the main deformation is the thrusting of the hanging wall due to the less steep fault plane of the central fault. An active anticline formed on the hanging wall of the new active thrust fault, and the terrace surface on this anticline have deformed evidently since the Quaterary, and the latest activity of this anticline caused the Lushan earthquake, so the newly formed active thrust fault is probably the seismogenic structure of the Lushan earthquake. Huge displacement or tectonic deformation has been accumulated on the fault segment curved towards southeast from the Daxi country to the Taiping town during a long time, and the release of the strain and the tectonic movement all concentrate on this fault segment. The Lushan earthquake is just one event during the whole process of tectonic evolution, and the newly formed active thrust faults in the footwall may still cause similar earthquake in the future.

Reference | Related Articles | Metrics
ACTIVE FOLDING AND ACTIVE FLEXURAL-SLIP FAULT SCARPS ON MINGYAOLE ANTICLINE, WEST MARGIN OF TARIM
YANG Xiao-dong, CHEN Jie, LI Tao, LI Wen-qiao, LIU Lang-tao, YANG Hui-li
SEISMOLOGY AND GEOLOGY    2014, 36 (1): 14-27.   DOI: 10.3969/j.issn.0253-4967.2014.02.002
Abstract917)      PDF(pc) (8567KB)(792)       Save
In recent times, some moderate-large earthquakes occurred in active folds and thrusts, which seem not directly related with known active faults on the surface and did not form surface ruptures. Although such individual earthquakes might correspond to a known surface active fault, most of them occurred under active folds, formed by displacement of burial thrusts which are located at depth of tens kilometers beneath the folds. Stein named such earthquake as "folding earthquake". It is quite a challenging issue to study and assess the seismic hazards of folding earthquakes occurring in compressive tectonic regions with active folds and burial thrusts. Derived from active folding secondary faults such as flexural-slip faults, bend-moment faults, it is easier to identify that the fold itself. These secondary faults have coseismic slip at the surface and record the active history of seismogenic thrusts which provide an effective way to study the seismic activity of blind thrusts. Many flexural-slip fault scarps are developed on several terrace surfaces at the two limbs of Mingyaole anticline, located along the western margin of the Tarim Basin. These scarps mainly form on the limb of steep beds closest to active axial surfaces(dips of 74°~89°, 18°~20° and 45°~60°, separately), within a range of 50~1 200m from active axial surface, and most are 90~1 000m wide. Overall, the height of the flexural-slip fault scarps gradually deceases away from the active axial surface. These scarps occur at nearly equidistant or multiple distance spacing on the same terrace surface. The strike of the flexural-slip fault scarp is consistent with the strike of underlying bedrock, which is dominated by interbedded medium-thick layered sandstone or fine-grain sandstone with similar rock mechanical properties. Since the abandonment of terrace T3 at the south limb of the Mingyaole anticline, the shortening rate and uplift rate absorbed by flexural-slip faults are at least (1.0±0.2)mm/a, (1.2±0.1)mm/a, respectively. Movement of the flexural-slip faults is characterized by repeatability and neo-activity.
Reference | Related Articles | Metrics
QUATERNARY DETACHMENT FOLDING AND PROPAGATION OF NORTH LIMB FAULT OF MUSHI ANTICLINE,NORTHERN MARGIN OF THE PAMIR
XIAO Wei-peng, CHEN Jie, LI Tao, LI Wen-qiao, Thompson J
SEISMOLOGY AND GEOLOGY    2011, 33 (2): 289-307.   DOI: 10.3969/j.issn.0253-4967.2011.02.004
Abstract1892)      PDF(pc) (1203KB)(1316)       Save

The Mushi anticline locates at the frontier Pamir arcuate nappe tectonics belt(PFT),which is a detachment fold with a gentle south limb and steep north limb,and its earth crust minimum shortening is ~0.7km with uplift up to 1.5km.The north limb fault of Mushi anticline is composed of a series of obsequent slope fault scarps,and the distribution of vertical displacements among different fault scarps presents a pattern of one increasing and the other decreasing.No matter of the entire western segment of the northern limb faults or a single fault,the displacement distribution is asymmetric,that is,high in the east and low in the west,and the same to displacement gradient.This may reflect the late Quaternary folding of Mushi anticline as being intensive in the east and feeble in the west.The fault may be a shallow,rootless secondary fault formed during the growth process of the anticline in order to accommodate the constantly decreased space of anticline nucleus as the fold tightened gradually.The late Quaternary shortening rate of the fault is 0.8mm/a,absorbing only one fifth of the nowadays crustal shortening rate of the region.The growth of Mushi anticline and the north limb fault of Mushi anticline both are in accordance with global fault dataset scaling relationship,that is,fault length is over 100m.The power-law regression scaling exponent of west segment of the northern limb fault of Mushi anticline is n=1.37(R2=0.88),and its specific value(k)of maximum fault displacement and fault length is far less than that of the Mushi anticline,which is ~4.3%,but 1~2 orders of magnitude larger than that of global fault dataset(10-4~10-5). This may show that the northern limb fault of Mushi anticline is the offshoot of several moderate strong earthquakes,and it is still in initial stages.

Reference | Related Articles | Metrics
COSEISMIC SURFACE RUPTURES OF MULTI SEGMENTS AND SEISMOGENIC FAULT OF THE TASHKORGAN EARTHQUAKE IN PAMIR,1895
LI Wen-qiao, CHEN Jie, YUAN Zhao-de, HUANG Ming-da, LI-Tao, YU Song, YANG Xiao-dong
SEISMOLOGY AND GEOLOGY    2011, 33 (2): 260-276.   DOI: 10.3969/j.issn.0253-4967.2011.02.002
Abstract1833)      PDF(pc) (1364KB)(1698)       Save

Based on the interpretation of satellite images,combined with field geomorphic and tectonic investigations and surveys,we get the parameters of surface rupture zones of the 1895 Tashkorgan earthquake,such as the geometry,the types of rupture,the displacements and their distribution and so on.And on these grounds,we estimate the possible magnitude,the epicenter and seismogenic fault of this earthquake.The south segment of Muztag Fault and the whole Taheman Fault were ruptured by the Tashkorgan earthquake.The length of the surface rupture zone is 27km.The rupture zone strikes NNE,and it changes from N25°W in the north to N25°E in the south segment.The surface rupture zone is composed of consequent or obsequent normal fault scarps,represented by horst,graben,and step-like structure on the profile,and distributed in patterns as en echelon,parallel,convergent and parallel cross shaped and so on in the plane.The surface ruptures are dominated by pure dip-slip,with little lateral displacement.The general width of these overlapping surficial fault rupture strands is ca.30~60m, and the largest may come to 825m.The largest co-seismic displacement of a single scarp is 4.2±0.2m. The surface ruptures are composed of three independent secondary segments.The seismogenic fault of this earthquake is Taheman Fault.The south segment of Muztag Fault was also ruptured.Moreover,we find a younger fault scarp which may be induced by the 1895 earthquake in the small basin between the two above-mentioned faults.

Reference | Related Articles | Metrics
LATE CENOZOIC AND PRESENT TECTONIC DEFORMATION IN THE PAMIR SALIENT,NORTHWESTERN CHINA
CHEN Jie, LI Tao, LI Wen-qiao, YUAN Zhao-de
SEISMOLOGY AND GEOLOGY    2011, 33 (2): 241-259.   DOI: 10.3969/j.issn.0253-4967.2011.02.001
Abstract2463)      PDF(pc) (1173KB)(2196)       Save

The northern margin of the Pamir salient indented northward by ~300km during the late Cenozoic,however,the spatiotemporal evolution of this process is still poorly constrained.Regional deformation within the Pamir salient is asymmetric.Previous work has shown that deformation along the western flank of the Pamir was accommodated by northwest-directed radial thrusting and associated anticlockwise vertical axis rotation of the Pamir over the eastern margin of the Tajik Basin,along with a component of left-slip faulting along the Darvaz Fault.In contrast,subduction of the Tajik-Tarim Basin beneath the Pamir along the MPT was absorbed along the eastern margin of the salient by dextral-slip along the Kashgar-Yecheng transfer system,accompanied with Oligocene-Miocene northward underthrusting, thickening and widespread melting of the middle and lower crust beneath the Pamir,eventually led to east-west extension along the Kongur Shan extensional system at ~7~8Ma.The slip rate of the KYTS decreased substantially from 11~15mm/a to 1.7~5.3mm/a since at least 3~5Ma,termination of slip along the northern segment of the Karakorum Fault occurred almost at the same time.Late Quaternary and present active deformation in the Pamir is dominated by east-west extension along the Kongur Shan extensional system and north-south contraction along the PFT and the Atux-Kashi fold belts in the southern margin of Tianshan.

Reference | Related Articles | Metrics
A PRELIMINARY STUDY ON DATONG FAULT BELT
LI Zhi-min, TIAN Qin-jian, YAO Sheng-hai, LI Wen-qiao, GAO Zhan-wu
SEISMOLOGY AND GEOLOGY    2007, 29 (4): 855-862.  
Abstract2178)      PDF(pc) (4561KB)(1131)       Save
Datong Fault belt is a northwest trending fault in the north of Qinghai-Tibet plateau which controls the boundary of Xining Basin and Datong Basin.It consists of the Maziying-Miaogou(F1)Fault and the Laoye mountain-Nanmenxia Fault(F2).There is obvious displacement in vertical direction along the fault belt.The field investigation results show that this belt has long-term activity.There are several meters-long crushed zone and veins along the fault side in the basement rock.In the visible profile of fault,the Cambria system thrusts to the red brick Quaternary gravel,and there are several centimeters-thick fault gouges along the fault side.ESR dating of the fault gouge in the fault profile shows an age of(610?61)ka.The covering deluvial loess is not offset,and the OSL result is(14.6?1.5)ka.So it can be concluded that the fault belt was active in middle Pleistocene but not in later Pleistocene according to the age data and geomorphologic feature.Interior stratum of the Datong Basin is mainly featured with fold with the major axis in northwest direction.According to the relation of fault and fold deformation,Datong Fault is a transversal tear,which is due to uneven compression of the folds in different parts and the NNE-oriented regional compressional stress.It is common among the NE-trending faults in northeastern Qinghai-Tibet plateau.These NE-trending faults aren't large,and most are located in the active plate.They are all nearly vertical to the axis of the folds and compressive basins.
Related Articles | Metrics