On 20 April 2013, a destructive earthquake, the Lushan MS7.0 earthquake, occurred in the southern segment of the Longmenshan Fault zone, the eastern margin of the Tibetan plateau in Sichuan, China. This earthquake did not produce surface rupture zone, and its seismogenic structure is not clear. Due to the lack of Quaternary sediment in the southern segment of the Longmenshan fault zone and the fact that fault outcrops are not obvious, there is a shortage of data concerning the tectonic activity of this region. This paper takes the upper reaches of the Qingyijiang River as the research target, which runs through the Yanjing-Wulong Fault, Dachuan-Shuangshi Fault and Lushan Basin, with an attempt to improve the understanding of the tectonic activity of the southern segment of the Longmenshan fault zone and explore the seismogenic structure of Lushan earthquake. In the paper, the important morphological features and tectonic evolution of this area were reviewed. Then, field sites were selected to provide profiles of different parts of the Qingyijiang River terraces, and the longitudinal profile of the terraces of the Qingyijiang River in the south segment of the Longmenshan fault zone was reconstructed based on geological interpretation of high-resolution remote sensing images, continuous differential GPS surveying along the terrace surfaces, geomorphic field evidence, and correlation of the fluvial terraces. The deformed longitudinal profile reveals that the most active tectonics during the late Quaternary in the south segment of the Longmenshan Fault zone are the Yanjing-Wulong Fault and the Longmenshan range front anticline. The vertical thrust rate of the Yanjing-Wulong Fault is nearly 0.6~1.2mm/a in the late Quaternary. The tectonic activity of the Longmenshan range front anticline may be higher than the Yanjing-Wulong Fault. Combined with the relocations of aftershocks and other geophysical data about the Lushan earthquake, we found that the seismogenic structure of the Lushan earthquake is the range front blind thrust and the back thrust fault, and the pop-up structure between the two faults controls the surface deformation of the range front anticline.
The seismogenic structure of the Lushan earthquake has remained in suspensed until now. Several faults or tectonics, including basal slipping zone, unknown blind thrust fault and piedmont buried fault, etc, are all considered as the possible seismogenic structure. This paper tries to make some new insights into this unsolved problem. Firstly, based on the data collected from the dynamic seismic stations located on the southern segment of the Longmenshan fault deployed by the Institute of Earthquake Science from 2008 to 2009 and the result of the aftershock relocation and the location of the known faults on the surface, we analyze and interpret the deep structures. Secondly, based on the terrace deformation across the main earthquake zone obtained from the dirrerential GPS meaturement of topography along the Qingyijiang River, combining with the geological interpretation of the high resolution remote sensing image and the regional geological data, we analyze the surface tectonic deformation. Furthermore, we combined the data of the deep structure and the surface deformation above to construct tectonic deformation model and research the seismogenic structure of the Lushan earthquake. Preliminarily, we think that the deformation model of the Lushan earthquake is different from that of the northern thrust segment ruptured in the Wenchuan earthquake due to the dip angle of the fault plane. On the southern segment, the main deformation is the compression of the footwall due to the nearly vertical fault plane of the frontal fault, and the new active thrust faults formed in the footwall. While on the northern segment, the main deformation is the thrusting of the hanging wall due to the less steep fault plane of the central fault. An active anticline formed on the hanging wall of the new active thrust fault, and the terrace surface on this anticline have deformed evidently since the Quaterary, and the latest activity of this anticline caused the Lushan earthquake, so the newly formed active thrust fault is probably the seismogenic structure of the Lushan earthquake. Huge displacement or tectonic deformation has been accumulated on the fault segment curved towards southeast from the Daxi country to the Taiping town during a long time, and the release of the strain and the tectonic movement all concentrate on this fault segment. The Lushan earthquake is just one event during the whole process of tectonic evolution, and the newly formed active thrust faults in the footwall may still cause similar earthquake in the future.
The Mushi anticline locates at the frontier Pamir arcuate nappe tectonics belt(PFT),which is a detachment fold with a gentle south limb and steep north limb,and its earth crust minimum shortening is ~0.7km with uplift up to 1.5km.The north limb fault of Mushi anticline is composed of a series of obsequent slope fault scarps,and the distribution of vertical displacements among different fault scarps presents a pattern of one increasing and the other decreasing.No matter of the entire western segment of the northern limb faults or a single fault,the displacement distribution is asymmetric,that is,high in the east and low in the west,and the same to displacement gradient.This may reflect the late Quaternary folding of Mushi anticline as being intensive in the east and feeble in the west.The fault may be a shallow,rootless secondary fault formed during the growth process of the anticline in order to accommodate the constantly decreased space of anticline nucleus as the fold tightened gradually.The late Quaternary shortening rate of the fault is 0.8mm/a,absorbing only one fifth of the nowadays crustal shortening rate of the region.The growth of Mushi anticline and the north limb fault of Mushi anticline both are in accordance with global fault dataset scaling relationship,that is,fault length is over 100m.The power-law regression scaling exponent of west segment of the northern limb fault of Mushi anticline is n=1.37(R2=0.88),and its specific value(k)of maximum fault displacement and fault length is far less than that of the Mushi anticline,which is ~4.3%,but 1~2 orders of magnitude larger than that of global fault dataset(10-4~10-5). This may show that the northern limb fault of Mushi anticline is the offshoot of several moderate strong earthquakes,and it is still in initial stages.
Based on the interpretation of satellite images,combined with field geomorphic and tectonic investigations and surveys,we get the parameters of surface rupture zones of the 1895 Tashkorgan earthquake,such as the geometry,the types of rupture,the displacements and their distribution and so on.And on these grounds,we estimate the possible magnitude,the epicenter and seismogenic fault of this earthquake.The south segment of Muztag Fault and the whole Taheman Fault were ruptured by the Tashkorgan earthquake.The length of the surface rupture zone is 27km.The rupture zone strikes NNE,and it changes from N25°W in the north to N25°E in the south segment.The surface rupture zone is composed of consequent or obsequent normal fault scarps,represented by horst,graben,and step-like structure on the profile,and distributed in patterns as en echelon,parallel,convergent and parallel cross shaped and so on in the plane.The surface ruptures are dominated by pure dip-slip,with little lateral displacement.The general width of these overlapping surficial fault rupture strands is ca.30~60m, and the largest may come to 825m.The largest co-seismic displacement of a single scarp is 4.2±0.2m. The surface ruptures are composed of three independent secondary segments.The seismogenic fault of this earthquake is Taheman Fault.The south segment of Muztag Fault was also ruptured.Moreover,we find a younger fault scarp which may be induced by the 1895 earthquake in the small basin between the two above-mentioned faults.
The northern margin of the Pamir salient indented northward by ~300km during the late Cenozoic,however,the spatiotemporal evolution of this process is still poorly constrained.Regional deformation within the Pamir salient is asymmetric.Previous work has shown that deformation along the western flank of the Pamir was accommodated by northwest-directed radial thrusting and associated anticlockwise vertical axis rotation of the Pamir over the eastern margin of the Tajik Basin,along with a component of left-slip faulting along the Darvaz Fault.In contrast,subduction of the Tajik-Tarim Basin beneath the Pamir along the MPT was absorbed along the eastern margin of the salient by dextral-slip along the Kashgar-Yecheng transfer system,accompanied with Oligocene-Miocene northward underthrusting, thickening and widespread melting of the middle and lower crust beneath the Pamir,eventually led to east-west extension along the Kongur Shan extensional system at ~7~8Ma.The slip rate of the KYTS decreased substantially from 11~15mm/a to 1.7~5.3mm/a since at least 3~5Ma,termination of slip along the northern segment of the Karakorum Fault occurred almost at the same time.Late Quaternary and present active deformation in the Pamir is dominated by east-west extension along the Kongur Shan extensional system and north-south contraction along the PFT and the Atux-Kashi fold belts in the southern margin of Tianshan.