Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
CHARACTERISTICS OF FOCAL MECHANISM AND STRESS FIELD IN THE EASTERN BOUNDARY OF THE SICHUAN-YUNNAN BLOCK
GUO Xiang-yun, FANG Li-hua, HAN Li-bo, LI Zhen-yue, LI Chun-lai, SU Shan
SEISMOLOGY AND GEOLOGY    2024, 46 (2): 371-396.   DOI: 10.3969/j.issn.0253-4967.2024.02.008
Abstract440)   HTML25)    PDF(pc) (11846KB)(327)       Save

It is important to study the characteristics of the tectonic stress field studies which could provide a deeper understanding of the internal stress environment of the crust. It can provide useful assistance for exploring the relationship between the tectonic stress field and earthquake development. At the same time, it plays an important role in understanding block interactions, fault movement, tectonic deformation, and revealing the dynamic mechanical processes of the continent. The focal mechanism solutions contain abundant information reflecting the stress field.

In this paper, using the broadband records from 128 permanent and temporary regional stations from the Chinese National Seismic Network(CNSN)deployed in the Sichuan-Yunnan Province and its adjacent, we determined the focal mechanisms of 3 951 earthquakes by the cut-and-paste(CAP)method and the HASH method. The friction coefficient and stress properties of the main active fault and characteristics of the tectonic stress field in this area are analyzed by using two different methods which are the damped inversion method(STASI)and iterative joint inversion method from focal mechanisms.

The results of the focal mechanisms show that: there are 2 512 strike-slip earthquakes in the study area, accounting for 63.58% of all earthquakes; there are 818 normal fault type and normal strike-slip type earthquakes, accounting for 20.70% of all earthquakes; there are 621 reverse strike slip and reverse thrust earthquakes, accounting for 15.72% of all earthquakes. The most of earthquakes in the study area are distributed in active fault zones, the strike of the fault plane is consistent with the orientation of active fault zones. It revealed predominantly strike-slip faulting characteristics of earthquakes in the Eastern Boundary of the Sichuan-Yunnan Block, while the reverse thrust of earthquakes is mainly concentrated in the Longmenshan fault zone, as well as the NW trending Mabian-Yanjin Fault and the NE trending of Ludian-Zhaotong and Lianfeng faults which lied on the eastern boundary of the Sichuan-Yunnan block. Overall, the characteristics of the source mechanism are consistent with the regional tectonic background.

Results of the stress field inversion confirmed main active fault in the Eastern Boundary of the Sichuan-Yunnan Block is under a strike-slip stress regime, maximum and minimum compressional stress axes are nearly horizontal. The maximum compressional axes are primarily oriented in NW-SE and NWW-SEE direction, and they experience a clockwise rotation from north to south. Against the strike-slip background, normal faulting stress regimes and reverse faulting stress can be seen in the regional areas. The most prominent is the Daliangshan fault zone, which has obvious differences from the overall characteristics of the stress field with the eastern boundary of the Sichuan Yunnan Block. The maximum horizontal principal stress in the northern section shows a nearly EW direction, with a strike-slip type stress property, and the NW-SE direction in the southern section, with a thrust type stress property. The distribution characteristics of the stress field are consistent with the fault type of sinistral strike-slip and thrust on the eastern boundary of the Sichuan Yunnan block

The shape ratio R-value varies significantly, the R-value in the Sanchakou area is relatively high, with obvious extrusion characteristics, the R-values of the Xianshuihe fault zone, Anninghe fault zone and Xiaojiang fault zone are all between 0.25-0.5, showing NE-SW compression and NW-SE tension, and the tensile stress may be much less than the compressive stress(strike-slip type). The R values of the northern segment of the Daliangshan fault zone, the southern segment of the Anninghe fault zone, and Zemuhe fault zone are all between 0.5-1, showing NW-SE compression and NE-SW tension, and the compressive stress is greater than the tensile stress. To sum up, the current stress characteristics of the eastern boundary of the Sichuan Yunnan rhombic block are shear strain and local compression or tension.

There are different friction coefficients of the main faults in the study area: The Anninghe fault zone is 0.60, the Xianshuihe and Zemuhe fault zones are 0.80, the Xiaojiang fault zone is 0.75 and northern and southern sections of the Daliangshan fault zone are 0.65 and 0.85. The friction coefficients of the Xianshuihe Fault, the southern section of the Daliangshan Fault, and the Zemuhe Fault are above 0.75. The high friction coefficients of these fault zones may be because they are strike-slip faults, and the friction coefficients themselves are relatively high. The southern section of the Xiaojiang fault zone may be related to the development of fault gouges in the fault zone.

Table and Figures | Reference | Related Articles | Metrics
THE STATIC COULOMB STRESS INFLUENCE OF THE MAINLING M6.9 EARTHQUAKE IN TIBET ON NOVEMBER 18, 2017 TO THE SUBSEQUENT EARTHQUAKES
LI Zhen-yue, WAN Yong-ge, JIN Zhi-tong, YANG Fan, HU Xiao-hui, LI Ze-xiao
SEISMOLOGY AND GEOLOGY    2020, 42 (5): 1091-1108.   DOI: 10.3969/j.issn.0253-4967.2020.05.005
Abstract634)   HTML    PDF(pc) (4980KB)(811)       Save
Based on the rupture model of Mainling M6.9 earthquake in Tibet on November 18, 2017, the spatial distribution of static Coulomb failure stress change at different depths are calculated respectively according to two different receiving fault selection schemes. The one scheme is that we set the parameters of receiving fault at different position to be consistent with the main shock; The other scheme is on the assumption that fault's orientation is randomly distributed under the ground, and we select the receiving fault which is most prone to slide under the influence of coseismic stress field produced by main shock. Therefore, the geometrical orientation of receiving fault will vary with space. According to the above two results of static Coulomb failure stress change, we discussed the static Coulomb stress influence produced by the main shock to short-term aftershocks and the Medog M6.3 earthquake in Tibet on April 24, 2019, respectively. The result shows that: 1)When the parameters of receiving fault are same with the main shock, the proportion of aftershocks in the positive zone of static Coulomb failure stress change is small at each depth. The focal mechanisms of aftershocks in the positive zone of static coulomb fracture stress are deemed similar to the main shock. We thought that they are motivated by the continuous rupture of the main shock. 2)Most of the aftershocks are in the negative zone of static Coulomb failure stress change at each depth. We inferred that this phenomenon which may be on account of the focal mechanisms of these aftershocks is quite different with the main shock. From the result of receiving fault to choose the most prone to slide under the coseismic stress field produced by main shock, we can clearly see that all the aftershocks are within the zone of static Coulomb failure stress change greater than the trigger threshold of 0.01MPa at different depths. It indicates that all the aftershocks are likely to be triggered. It was speculated that the aftershocks in the negative zone of static Coulomb failure stress change occurred in the crushed zone caused by violent rupture of the main shock. There are countless cracks in the crushed zone, and the orientation of these cracks is abundant. Perhaps, because most aftershocks occurred on these various cracks, their focal mechanisms are quite different from the main shock. The value of elastic constants will be reduced significantly in the crushed zone. All the results in this paper also indicate that considering the elastic constants difference between in and out of the source region is beneficial to accurately estimate the static Coulomb stress influence between earthquakes in the source region. 3)Different institutes and authors used different data and methods to get several different focal mechanisms of the Medog earthquake. According to these results, we calculated a central focal mechanism solution, which has a minimum difference with these focal mechanisms. On the basis of this central focal mechanism solution, the static Coulomb stress influence of the Mainling earthquake to the Medog earthquake is calculated quantitatively. Result indicates that the magnitude of static Coulomb failure stress change generated by the Mainling earthquake is quite small on both two nodal planes of the central focal mechanism solution of the Medog earthquake, this means that the Medog earthquake is independent of the Mainling earthquake.
Reference | Related Articles | Metrics
STUDY ON RELATIONSHIP BETWEEN THE ACTIVITY OF MIYALUO FAULT AND WENCHUAN EARTHQUAKE SEQUENCE
LI Zhen-yue, WAN Yong-ge, SHENG Shu-zhong
SEISMOLOGY AND GEOLOGY    2019, 41 (1): 72-83.   DOI: 10.3969/j.issn.0253-4967.2019.01.005
Abstract718)   HTML    PDF(pc) (2647KB)(499)       Save
Under the background of thrusting stress regime, a large number of strike-slip earthquakes occurred on the Miyaluo Fault during the Wenchuan earthquake sequence process, which is in the southern part of the Longmenshan Fault. In order to find the cause of their occurrence, stress tensors in subregions near the Miyaluo Fault are estimated. The result shows that in both north and south side of the Miyaluo Fault, the direction of principal compressive stress is nearly perpendicular to the Longmenshan Fault, and its dip is nearly horizontal, and the direction of tensile stress is nearly vertical. While in the Miyaluo fault zone, the direction of principal compressive stress is SWW-NEE, and its dip is nearly horizontal, the direction of principal tensile stress is NNW-SSE, also its dip is nearly horizontal. It is consistent with sinistral shear stress state in the Miyaluo fault zone. It was referred that the behavior of Miyaluo Fault during the Wenchuan earthquake sequence process was caused by tearing effect generated from unbalanced forces of two sides of the fault. To understand the rupture mode of the aftershocks in subregions as described above, the total seismic moment tensors are estimated by adding the corresponding component separately of the seismic moment tensor of aftershocks in each region. The result shows the similar trend of total seismic moment tensor components in the north and south side of the Miyaluo Fault(indicating the consistency of rupture mode in the north and south side of the Miyaluo Fault), and most seismic moment tensor components in the south side is higher than that in the north side, especially the compression component perpendicular to Longmenshan Fault and expansion component in the vertical direction. It indicates that thrusting component in the southeast direction in the south side is greater than that in the north side, and the thrusting difference causes the sinistral tearing effect of the Miyaluo Fault. We also find that the sinistral tearing component of the Miyaluo Fault is the same order of magnitude with the thrusting difference of its two sides, which indicates that the tearing effect of Miyaluo Fault can be completely explained by thrusting difference of its two sides. According to the analysis, we put forward the dynamic model of the Miyaluo Fault, which can explain the above phenomenon.
Reference | Related Articles | Metrics