Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
HOLOCENE ACTIVITY AND PALEOEARTHQUAKES OF THE WEIXI-QIAOHOU FAULT
CHANG Zu-feng, CHANG Hao, LI Jian-lin, MAO Ze-bin, ZANG Yang
SEISMOLOGY AND EGOLOGY    2021, 43 (4): 881-898.   DOI: 10.3969/j.issn.0253-4967.2021.04.009
Abstract975)   HTML49)    PDF(pc) (18555KB)(526)       Save

The Weixi-Qiaohou Fault is located in the west boundary of Sichuan-Yunnan rhombic block, and also the north extension segment of active Red River fault zone. Strengthening the research on the late Quaternary activity of Weixi-Qiaohou Fault is of great theoretical and practical significance for further understanding the seismogeological background in northwest Yunnan and the structural deformation mechanism of the boundary of Sichuan-Yunnan block. Based on the 1︰50 000 active fault mapping and the research results of the National Natural Science Fund project, this paper mainly elaborates the latest active times of the fault and paleoseismic events along it revealed by exploration trenches at Matoushui, Shiyan, and Yushichang. Matoushui trench revealed three faults developed in late Pleistocene and Holocene pluvial fan accumulation, and the latest ages of faulted strata are(638±40)a BP and(1 335±23)a BP, respectively. The Shiyan trench revealed six faults, three in the western section and three in the eastern section. The three faults in the western section dislocated the late Pleistocene and Holocene accumulation, and the 14C ages of the latest faulted strata are(4 383±60)a BP, (4 337±52)a BP and(4 274±70)a BP, respectively; the other three faults revealed in the eastern part of the trench offset the Holocene fluvial facies accumulation, the 14C age of the latest faulted strata in the footwall of the main fault is(9 049±30)a BP, and the 14C ages of two sets of faulted sag pond deposits in the hanging wall are(1 473±41)a BP and(133±79)a BP, separately. Five active faults are revealed in Yushichang trench. Among them, the F1 and F2 dislocated the gray-white gravelly clay layer and the black peat soil layer. The 14C age of the gray-white gravelly clay layer is(1 490±30)a BP, and 14C ages of the upper and lower part of the black peat soil layer are(1 390±30)a BP and(1 190±30)a BP, respectively. The F3 and F4 faults offset the gray-white gravelly clay layer, the black peat soil layer and the brown yellow sand bearing clay, and the OSL age of brown yellow sand bearing clay is(0.6±0.2)ka. The F5 fault dislocated the gray-white gravelly clay layer, its 14C age is(1 490±30)a BP. According to the relationship between strata and the analysis of dating data, the Yushichang trench revealed two seismic events, the first one occurred at(1 490±30)~(1 390±30)a BP, as typified by the faulting of F5, the second paleoseismic event is represented by the faulting of F1, F2, F3 and F4.The F1 and F2 faulted the gray-white gravelly clay layer and the black peat soil. Fault F3 and F4 dislocated the gravelly clay, the peat soil and the sandy clay, and a seismic wedge is developed between fault F3 and F4, which is filled with the brownish yellow sandy clay. The OSL dating result of the brownish yellow sandy clay layer is(0.6±0.2)ka. Judging from the contact relationship between strata and faults, F3 and F4may also faulted the upper brownish yellow sandy clay layer, but the layer was eroded due to later denudation. Therefore, fault F1, F2, F3 and F4 represent the second event. Combined with the analysis of fault scarps with a height of 2~2.5m and clear valley landform in the slope near the fault, it is estimated that the time of the second paleoearthquake event is about 600 years ago, and the magnitude could reach 7. The trench at Gaichang reveals that the seismic wedge, soft sedimentary structure deformation and the medium fine sand uplift(sand vein)and other ancient seismic phenomena are well developed near the fault scarp. All these phenomena are just developed below the fault scarp. The vertical dislocation of the strata on both sides of the seismic wedge is 35cm, and 14C ages of the misinterpreted peat clay are(36 900±350)a BP and(28 330±160)a BP, respectively, so, the occurrence time of this earthquake event is estimated to be about 28 000a BP. If the fault scarp with a height of 2m was formed during this ancient earthquake, and considering the 0.35m vertical offset revealed by the trench, the magnitude of this ancient earthquake could reach 7.The Matoushui trench revealed three faults, which not only indicated the obvious activity of the faults in late Pleistocene to Holocene, but also revealed two paleoseismic events. Among them, the OSL age of the faulted sand layer by fault F1 is(21.54±1.33)ka, which represents a paleoearthquake event of 20 000 years ago. The faulted strata by fault F2 and F3 are similar, which represent another earthquake event. The 14C dating results show that the age of the latest faulted strata is(638±40)Cal a BP, accordingly, it is estimated that the second earthquake time is about 600 years ago. A clear and straight fault trough with a width of several ten meters and a length of 4km is developed from Meiciping to Matoushui. Within the fault trough, there are fault scarps with different heights and good continuity, the height of which is generally 3~5m, the lowest is 2~3m, and the highest is 8~10m. Tracing south along this line, the eastern margin of Yueliangping Basin shows a fault scarp about 5m high. After that, it extends to Luoguoqing, and again appears as a straight and clear fault scarp several meters high. In addition, in the 2km long foothills between Hongxing and Luoguoping, there are huge rolling stones with diameters of 2~5m scattered everywhere, the maximum diameter of which is about 10m, implying a huge earthquake collapse occurred here. According to the length, height, width and dislocation of the rupture zone, and combined with the experience of Yiliang M≥7 earthquake and Myanmar Dongxu M7.3 earthquake, this earthquake magnitude is considered to be ≥7.

Table and Figures | Reference | Related Articles | Metrics
THE LATEST ACTIVITY OF SUDIAN FAULT ON THE BORDER BETWEEN CHINA AND MYANMAR AND ITS TECTONIC SIGNIFICANCE
CHANG Zu-feng, CHANG Hao, MAO Ze-bin, LUO Lin, WANG Qi
SEISMOLOGY AND GEOLOGY    2021, 43 (3): 559-575.   DOI: 10.3969/j.issn.0253-4967.2021.03.006
Abstract709)   HTML    PDF(pc) (13466KB)(223)       Save
The Sudian Fault extends in nearly NS direction and crosses the border between China and Myanmar, with a length of about 100km. Historically, many earthquakes have occurred along the fault. However, restricted by traffic, climate and other factors, there has been little research on the late Quaternary activity of the fault for a long time. On the basis of results of field geological and geomorphological investigation, trenching and geochronology, the movement characteristics of the fault in late Quaternary, the latest active age and sliding rate are analyzed in this paper. The Neotectonic activity of the Sudian Fault is obvious. Beaded Quaternary basins in areas of Sudian, Mengdian, Huangcaoba and Longzhong have developed along the fault. Many boiling springs and gas springs are distributed linearly in the area of Humeng in the south section of the fault. The fault controls the Lama River and Zhanda River obviously. Fault landforms are mainly characterized by clear fault scarps, straight linear ridges and fault valleys. Mengdian pull apart basin is developed in the middle segment of Sudian Fault. In the Zuojiapo area of the western margin of the basin, there is a clear linear ridge about 1.7km long and a parallel fault valley which is close to the west side of the linear ridge. Trench excavation was carried out in this fault valley(24.97°N, 97.93°E). Zuojiapo trench reveals that three faults have developed in Quaternary deposits. At the position of 2~3m(from west to east)on the S wall of the trench, a fault dislocated all the strata(unit②~unit⑥)below the modern loam layer(unit①). These strata are obviously offset and some of them are cut off. The 14C age of the displaced unit ④(tested by BETA laboratory, USA)is(7 680±30)a, two 14C ages of the displaced unit ③are(6 970±30)a and(5 860±30)a, and the 14C age of the displaced unit ②is(1 260±30)a. The fault developed at 21m in the east section of S-wall of the trench has offset the lower bedrock(unit⑧), the middle gravel layer(unit⑤and unit⑦), the upper dark gray gravelly clay layer(unit④)and the peat interlayer(unit④'). In the peat interlayer(unit④'), there is obvious structural deflection deformation, and its 14C age is(350±30)a. There is another fault developed at 26~27m in the east section of S-wall of this trench, which cuts off the light yellow and light gray gravelly clay(unit ②), gray black gravelly clay(unit③), gray white sandy gravel(unit⑤), yellow gravelly silty clay(unit ⑥), yellow clay gravel(unit ⑦)and hornblende schist and quartz schist of Gaoligongshan group(unit ⑧). The fault shows obvious normal fault property, and the maximum offset is 1.3m. A 10cm wide schistosity zone is developed and gravels are arranged along the fault plane. The 14C ages of the faulted upper stratum(unit ③)are(1 100±30)a and(870±30)a. The N-wall also reveals the existence of faults, corresponding to the S-wall of the trench. These faults and dislocated strata fully indicate that the fault was active during the Holocene. According to field investigation, the Sudian Fault is mainly characterized by horizontal dextral strike-slip movement. For example, in Mengnong tea field, obvious synchronous dextral displacement occurred in three gullies along the fault. From south to north, the displacements of the three gullies are 40m, 42m and 45m, respectively. Shutter ridge landform is developed at the gully mouth. In the lower part of the northernmost gully, there is a pluvial fan, and the 14C age of the bottom of the pluvial fan is(13 560±40)a, which is less than the formation age of the gully, but roughly represents the formation age of the gully, indicating that the Sudian Fault is mainly characterized by horizontal dextral strike-slip movement. In Sudian area, the Mengga River is right-laterally offset 1 050~1 100m by the fault. At 1.7km north of Sudian, a diluvial fan is right-laterally offset 18~22m. There are fault scarps with a height of 1~1.5m developed on the alluvial fan, Quaternary faults and bedrock fault scarps with a height of about 8m developed on its extension line. The three points of the scarps, Quaternary faults and bedrock scarps are in a straight line, which absolutely shows the reliability of the dislocation of the alluvial fan. An organic carbon sample is obtained 1.8m below the alluvial fan, and its 14C test age is (6 210±30)a. This age should be close to the formation age of the pluvial fan, indicating that the fault underwent obvious horizontal dextral strike-slip movement during the Holocene. In the Sadung Basin, Myanmar, a river is offset about 380m right-laterally, forming a hairpin bending landform. Due to the continuous collision between the Indian plate and the Eurasian plate, the Indosinian block in the southeastern margin of the Tibet Plateau around the Eastern Himalayan Syntaxis escaped southerly, and the western Yunnan became the most intense part of the south extrusion. During the southerly escapement of the Indosinian block, the right-lateral strike-slip movement of Sudian Fault and other faults striking near SN plays a role in adjusting and absorbing the block strain. Under the action of current NNE tectonic stress field, the intersection of the dextral strike-slip Sudian Fault striking NS and the sinistral strike-slip Dayingjiang Fault striking NE is the key part of tectonic stress concentration, which will be the seismic risk area to be focused in the future. The research result of late Quaternary activity of the fault is of great practical significance for the correct understanding and reasonable assessment of the medium to long-term strong earthquake risk in this area, and for the mitigation and prevention of the earthquake disaster in the border area.
Reference | Related Articles | Metrics
LATE QUATERNARY ACTIVITY OF FAULTS IN THE EPICENTER AREA OF JINGGU M6.6 EARTHQUAKE
MAO Ze-bin, CHANG Zu-feng, LI Jian-lin, CHANG Hao, ZHAO Jin-min, CHEN Gang
SEISMOLOGY AND GEOLOGY    2019, 41 (4): 821-836.   DOI: 10.3969/j.issn.0253-4967.2019.04.002
Abstract652)   HTML    PDF(pc) (10427KB)(176)       Save
The 2014 Jinggu M6.6 earthquake attacked the Jinggu area where few historical earthquakes had occurred and little study has been conducted on active tectonics. The lack of detailed field investigation on active faults and seismicity restricts the assessment of seismic risk of this area and leads to divergent view points with respect to the seismotectonics of this earthquake, so relevant research needs to be strengthened urgently. In particular, some studies suggest that this earthquake triggered the activity of the NE-trending faults which have not yet been studied. By the approaches of remote sensing image interpretation, structural geomorphology investigation and trench excavation, we studied the late Quaternary activity of the faults in the epicenter area, which are the eastern margin fault of Yongping Basin and the Yixiang-Zhaojiacun Fault, and drew the conclusions as follows:
(1)The eastern margin fault of Yongping Basin originates around the Naguai village in the southeastern margin of Yongping Basin,extending northward across the Qiandong, Tianfang, and ending in the north of Tiantou. The fault is about 43km long, striking near SN. The linear characteristic of the fault is obvious in remote sensing images. Structural geomorphological phenomena, such as fault troughs, linear ridges and gully dislocations, have developed along the faults. There are several dextral-dislocated gullies near Naguai village, with displacements of 300m, 220m, 146m, 120m and 73m, respectively, indicating that the fault is a dextral strike-slip fault with long-term activity. In order to further study the activity of the fault, a trench was excavated in the fault trough, the Naguai trench. The trench reveals many faults, and the youngest strata offseted by the faults are Holocene, with 14C ages of(1 197±51)a and(1 900±35)a, respectively. All those suggest that it is a Holocene active fault.
(2)The Yixiang-Zhaojiacun Fault starts at the southeast of the Jinggu Basin, passes through Xiangyan, Yixiang, Chahe, and terminates at the Zhaojiacun. The total length of the fault is about 60km, and is a large-scale NE-trending fault in the Wuliangshan fault zone. Four gullies are synchronously sinistrally dislocated at Yixiang village, with the displacements of 340m, 260m, 240m and 240m, indicating that the fault is a long-term active sinistral strike-slip fault. A trench was excavated in a fault trough in Yixiang village. The trench reveals a small sag pond and a fault. The fault offsets several strata with clear dislocation and linear characteristic. The thickness of strata between the two walls of fault does not match, and the gravels are oriented along fault plane. The offset strata have the 14C age of(2 296±56)a, (3 009±51)a, and(4 924±45)a, respectively, and another two strata have the OSL age of(1.8±0.1)ka, (8.6±0.5)ka respectively, by which we constrained the latest paleoearthquake between(1.8±0.1)ka(OSL-Y01)and(378±48)a BP(CY-07). This again provides further evidence that the fault is a Holocene fault with long-term activity.
(3)Based on the distribution of aftershocks and the predecessor research results, the 2014 Jinggu M6.6 earthquake and the M5.8, M5.9 strong aftershocks are regarded as being caused by the eastern margin fault of Yongping Basin, which is part of the Wuliangshan fault zone. The seismogenic mechanism is that the stress has been locked, concentrated and accumulated to give rise to the quakes in the wedge-shaped area near the intersection of the SN and NE striking faults, which is similar to the seismogenic mechanism in the southwest of Yunnan Province.
Reference | Related Articles | Metrics
TECTONIC INDICATIONS OF OCCURRENCE OF MODERATE-TO-STRONG EARTHQUAKES IN CHAOHU-TONGLING AREA, ANHUI PROVINCE
GUO Peng, HAN Zhu-jun, ZHOU Ben-gang, ZHOU Qing, MAO Ze-bin
SEISMOLOGY AND GEOLOGY    2018, 40 (4): 832-849.   DOI: 10.3969/j.issn.0253-4967.2018.04.008
Abstract1285)   HTML    PDF(pc) (11583KB)(170)       Save
The Chaohu-Tongling area in Anhui Province is a typical moderate-to-strong earthquake active area in the mainland of China. Four earthquakes occurred in this area, displayed as a NNE-trending zonal distribution, including the 1585 M5(3/4) Chaoxian earthquake and the 1654 M5(1/4) Lujiang earthquake, which formed a striking moderate-to-strong seismic activity zone. Field survey, shallow geophysical prospecting, drilling data, collection and dating of chronology samples and comprehensive analysis of fault activity indicate that the Fanshan, Xiajialing and Langcun faults are not active since Quaternary. The NNE-trending Tongling Fault is a buried middle-Pleistocene fault, but it can produce moderate-to-strong earthquakes and control the evolution and development of three en echelon geologic structures. The intensity of the four earthquakes is characterized by southward progressive decrease, which is in accordance with the characteristics that the subsidence range of Wuwei Basin is obviously larger than that of Guichi Basin to its south since late Cenozoic. In terms of deep structure, the characteristics of spatial distribution of Tongling Fault indicate that it corresponds to a NNE-striking Bouguer gravity anomaly gradient belt. So there is a spatial correspondence between the middle-Pleistocene Tongling Fault, the en echelon structures, the differential movement of the neotectonics, the Bouguer gravity anomaly gradient belt and the moderate-to-strong seismic activity belt in the Chaohu-Tongling area, indicating that they should be the tectonic indications of occurrence for moderate-to-strong earthquakes.
Reference | Related Articles | Metrics
HOLOCENE LEFT-LATERAL SLIP RATE OF THE LENGLONGLING FAULT, NORTHEASTERN MARGIN OF THE TIBETAN PLATEAU
GUO Peng, HAN Zhu-jun, JIANG Wen-liang, MAO Ze-bin
SEISMOLOGY AND GEOLOGY    2017, 39 (2): 323-341.   DOI: 10.3969/j.issn.0253-4967.2017.02.005
Abstract982)   HTML    PDF(pc) (13300KB)(529)       Save
The Lenglongling Fault(LLLF) is a major active left-lateral strike-slip fault along the northeastern margin of the Tibetan plateau. Fault slip rate is of great significance for researching the dynamics of tectonic deformation in NE Tibetan plateau and understanding the activity and seismic risk of the fault. However, slip rate of the LLLF, which remains controversial, is limited within~3~24mm/a, a relatively broad range. Taking Niutougou site(37.440 2°N, 102.094 0°E)and Chailong site(37.447 3°N, 102.063 0°E) in the upstream of Talihua gully in Menyuan County, Qinghai Province as the research objects, where faulted landform is typical, we analyzed the displacement evolution model and measured the slip amounts by back-slip of the faulted landform using high-resolution DEM from Terrestrial LiDAR and high-precision satellite images of Google Earth, and by collecting and testing samples from stratigraphic pit excavated in the faulted landform surface and stripping fresh stratigraphic section, we determined the abandonment age of the surface. Holocene slip rate obtained from Niutougou site and Chailong site is(6.4±0.7)mm/a and(6.6±0.3)mm/a, respectively, which have a good consistency. Taking into account the error range of the slip rate, the left-lateral slip rate of the LLLF is(6.6±0.8)mm/a since Holocene, which is between the previons results from geological method, also within the slip rate range of 4.2~8mm/a from InSAR, but slightly larger than that from GPS((4.0±1.0)mm/a). Late Quaternary slip rate of Qilian-Haiyuan fault zone, which displays an arc-shape distribution, turns to be the largest in LLLF region. The most intensive uplift in the LLLF region of the NE Tibetan plateau confirms the important role of the LLLF in accommodating the eastward component of movement of Tibetan plateau relative to the Gobi-Ala Shan block from one side.
Reference | Related Articles | Metrics
GEOMORPHOLOGY OF THE GYARING CO FAULT ZONAL DRAINAGE SYSTEM AND ITS STRUCTURAL IMPLICATIONS
WANG Duo, YIN Gong-ming, HAN Fei, LIU Chun-ru, MAO Ze-bin
SEISMOLOGY AND GEOLOGY    2017, 39 (2): 304-322.   DOI: 10.3969/j.issn.0253-4967.2017.02.004
Abstract1180)   HTML    PDF(pc) (9943KB)(339)       Save
Strike-slip faults and normal faults are dominant active tectonics in the interior of Tibetan plateau and control a series of basins and lakes showing extension since the Late Cenozoic, by contrast with the thrust faulting along the orogenic belts bordering the plateau. The late Neotectonic movement of those faults is key information to understand the deformation mechanism for Tibetan plateau. The Gyaring Co Fault is a major active right-lateral strike-slip fault striking~300° for a distance of~240km in central Tibet, in south of Bangong-Nujiang suture zone. The Gyaring Co Fault merges with the north-trending Xainza-Dinggye rift near the southern shore of Gyaring Co. From NW to SE, Dongguo Co, Gemang Co-Zhangnai Co, Zigui Co-Gyaring Co form the Gyaring Co fault zonal drainage basin. Some scholars have noticed that the formation of lakes and basins may be related to strike-slip faults and rift, but there is no analysis on the Gyaring Co fault zonal drainage basin and its response to regional tectonics. In recent years, a variety of quantitative geomorphic parameters have been widely used in the neotectonic systems to analyze the characteristics of the basin and its response mechanism to the tectonic movement. In this paper, we applied ASTER GDEM data on the ArcGIS platform, extracted the Gyaring Co fault zonal drainage basin based on Google Earth images (Landsat and GeoEye) and field work. We acquired basic geomorphic parameters of 153 sub-basin (such as grade, relief, average slope, area) and Hypsometric Index (HI) value and curve. Statistical results have indicated significant differences in scale(area and river network grade)in north and south sides of the fault. Southern drainage basins' relief, slope, HI value are higher than the northern basins, and the overall shape of hypsometric curve of northern basins are convex compared with southern concavity. Along the strike of the Gyaring Co Fault, average slope, and HI value are showing generally increasing trending and hypsometric curve become convex from west to east. By comparing and analyzing the lithology and rainfall conditions, we found that they have little influence on the basic parameters and HI value of drainage basins. Therefore, the changes of basin topographic differences between northern and southern side of fault and profile reveal the Gyaring Co Fault has experienced differential uplift since the late Cenozoic, southern side has greater uplift compared to the north side, and the uplift increased from NW to SE, thus indicate that normal faulting of the Gyaring Co Fault may enhanced by the Xainza-Dinggye rift. The early uplift of the Gangdise-Nyainqentanglha Mountain in late Cenozoic might provide northward inclined pre-existing geomorphic surfaces and the later further rapid uplift on the Gangdise-Nyaingentanglha Mountain and Xainza-Dinggye rift might contribute to the asymmetrical development of the Gyaring Co fault zonal drainage basin.
Reference | Related Articles | Metrics
THE HOLOCENE ACTIVITY AND STRIKE-SLIP RATE OF THE SOUTHERN SEGMENT OF XIAOJIANG FAULT IN THE SOUTHEASTERN YUNNAN REGION, CHINA
HAN Zhu-jun, DONG Shao-peng, MAO Ze-bin, HU Nan, TAN Xi-bin, YUAN Ren-mao, GUO Peng
SEISMOLOGY AND GEOLOGY    2017, 39 (1): 1-19.   DOI: 10.3969/j.issn.0253-4967.2017.01.001
Abstract824)      PDF(pc) (13993KB)(736)       Save

The southern segment of the Xiaojiang Fault (SSXF) is located at the intersection of the Xianshuihe-Xiaojiang Fault and Red River-Ailao Shan fault systems in the southeast margin of the Tibetan plateau. Based on the interpretation of remote sensing image, the SSXF clearly shows the linear feature and continuous distribution as a single, penetrating fault. It has a total length of about 70km, trends generally about 20° to the northeast and protrudes slightly in the middle to the east. A typically geomorphologic phenomenon about the synchronous left-lateral dislocation of ridges and gullies can be found at Liangchahe, Longtan Village along the SSXF. The distribution of faults, the sedimentary features, attitude variance and the primary dating results of the offset strata in the trench section across fault sag ponds reveal three paleoseismic events rupturing obviously the surface, which demonstrates that the SSXF has the ability of recurrence of strong earthquakes. High-precision topographic map about two gullies and the platform between them with synchronous dislocation is acquired by using the Trimble 5800 GPS real-time difference measurement system. The dislocation is (18.3±0.5)m. As the top geomorphologic surface between the above two gullies and their adjacent area, the terrace surface T2 stopped accepting deposits at ~2606a, based on the linear regression analysis of three dating data. According to the geological method, a sinistral strike-slip rate of (7.02±0.20)mm/a on the SSXF in the Holocene is obtained, which has a good consistency with the results provided by using GPS data. The preliminary results about the Holocene activity and slip rate of the SSXF demonstrate that the southward or south-southeast motion of the Sichuan-Yunnan block in the SE Yunnan region has not been absorbed by the possible shortening deformation and the sinistral strike-slip rate of the SSXF has not been drastically reduced. The SSXF is a Holocene fault with obvious activity. This preliminary understanding provides some basic geological data for the seismic risk evaluation of the SSXF in the future, and for the establishment and inspection of the seismotectonic model about the Sichuan-Yunnan block.

Reference | Related Articles | Metrics