Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
SIMULATION OF THE ROCK SURFACE LUMINESCENCE SIGNALS ON BEDROCK FAULT SCARPS BY STICK-SLIP AND CREEP MOVEMENTS
LUO Ming, CHEN Jie, QIN Jin-tang, YIN Jin-hui, YANG Hui-li, LIU Jin-feng, GONG Zhi-jun
SEISMOLOGY AND GEOLOGY    2024, 46 (2): 357-370.   DOI: 10.3969/j.issn.0253-4967.2024.02.007
Abstract311)   HTML9)    PDF(pc) (3308KB)(220)       Save

The reconstruct of the stick-slip and creep histories is essential for understanding fault activities and seismic hazard assessment. Distinguishing stick-slip and creep using geodetic technology has become a hot research area in recent years, but distinguishing and estimating seismic slip and creep on geological timescales(e.g., over hundreds of years)is challenging due to the lack of historical, geodetic and remote sensing data extending back more than a few hundred years. This study uses a newly developed dating technique(rock surface optically-stimulated-luminescence(OSL)dating)combined with the OSL decay parameters of granite samples from the Langshan fault in Inner Mongolia to simulate optically stimulated OSL-depth curves and depths of half saturation of luminescence signal under various scenarios such as fault seismic slipping, creeping, and erosion of colluvial wedge. The study compares these OSL-depth profiles, especially the depths of the half saturation, under different slipping modes, and summarizes their features.

During fault seismic slip, samples at different heights along the fault scarp display a “step-like” distribution pattern at their depths of half saturation. While during creep, however, they exhibit a “slope-like” pattern. Such differences may lie in that the slope during accelerating creeping is steeper than the slope during constant-speed creeping. Correspondingly, the resolution of residual luminescence-depth profile and depth of half saturation is also higher during accelerating creeping. During intra-earthquake creep events between seismic slip occurrences on the bedrock fault scarp, the distribution of half-saturation depth in the samples includes segments resembling both “steps” and “slopes”, which indicate the seismic slip and creep activities of the fault respectively. If the samples at the base of the colluvial wedge have had a sufficiently long last exposure time, the luminescence-depth profile and half-saturation depth distribution due to the erosion of the colluvial wedge would be approximately the same as in the three-phase seismic slip scenario. This indicates that samples previously buried by the colluvial wedge may be considered within the seismic displacement. Conversely, if the last exposure time of the base samples at the base of the colluvial wedge is short, the bleaching depth of the luminescence signal of these base samples will be noticeably shallower than that of the other samples within the seismic displacement, indicating the observed erosion of the colluvial wedge in this case. Furthermore, the seismic displacement ideally should include the buried location of the colluvial wedge. Therefore, when the luminescence curves and half-saturation depth distributions fail to identify the presence of the colluvial wedge, it is acceptable to include the buried location of the colluvial wedge in the seismic displacement calculation. Conversely, the luminescence-depth curves and half-saturation depth distributions document the erosion caused by the colluvial wedge. The simulation results demonstrate that this method can effectively distinguish between fault slipping and creeping, obtain corresponding displacements, and potentially record the erosion of colluvial wedge.

This study also analyzes the temporal resolution of the method for distinguishing fault activity times and the spatial resolution for quantifying displacements. The specific situation is as follows. When exposure age of the bedrock fault scarp is within a thousand years, the rock surface OSL dating method can easily distinguish types of active slips and seismic displacements for the earthquakes with a recurrence interval of hundreds of years. When exposure age of the bedrock fault scarp is in the range of 100-101ka, the method can easily distinguish types of active slips and seismic displacements for the earthquakes with a recurrence interval exceeding a thousand years. When exposure age of the bedrock fault scarp is over ten-thousand years, the resolution of this method may be significantly reduced. The spatial resolution of seismic displacements using this method depends on interval between sampling and testing samples, typically in 10~30cm.

Table and Figures | Reference | Related Articles | Metrics
RESIDUAL POST-IR IRSL SIGNALS OF POTASSIUM FELDSPAR FROM MODERN SAG POND DEPOSITS OF CENTRAL ALTYN TAGH FAULT: IMPLICATION FOR DATING YOUNG PALEOSEISMIC EVENTS
QIN Jin-tang, CHEN Jie, LI Tao
SEISMOLOGY AND GEOLOGY    2020, 42 (4): 981-992.   DOI: 10.3969/j.issn.0253-4967.2020.04.014
Abstract526)   HTML    PDF(pc) (2789KB)(255)       Save
The Altyn Tagh Fault(ATF)is one of the most prominent active strike-slip faults in the India-Eurasia collision. Fresh features of surface ruptures, which are attributed to seismic events taking place in the last millennium, are identified at several sites along the Che'erchen River to Qingshui River section on the central part of ATF. Accurate chronology of these earthquake events would help understand the spatial-temporal relationship of the recent earthquakes. However, great difficulties are encountered. The central ATF is located in the arid area, and the vegetation cover is so limited that rare organic materials appropriate for radiocarbon dating can be found in the sediments. Luminescence dating technique may serve as an alternative to directly determine the burial ages of the earthquake related sediments. The optically stimulated luminescence(OSL)signal of quartz, which has been widely employed for luminescence dating, displays unwanted charateristics for accurate dating. Firstly, the quartz OSL signal is not sensitive to irradiation, which leads to low signal-to-noise ratio or even no measurable quartz OSL signal. Secondly, the targeted samples of the last millennium are very young, and the radiation dose received during the burial is expected to be less than 3~4Gy, which futher deteriorates the signal-to-noise ratio of the quartz OSL signal. Therefore, quartz OSL signal is not appropriate for dating the sediments relevant to the recent earthquakes on ATF.
The infrared stimulated luminescence(IRSL)signal of potassium feldspar is an alternative, and it is in usual an order of maginitude more sensitive to raidation than the quartz OSL signal. The enhanced signal-to-noise ratio makes it applicable to young samples. The post-IR IRSL signal has been successfully applied to date the sediments beyond the Holocene, however, the relatively slow bleaching of the post-IR IRSL signal poses challenges on applying it to young sediments, especially for the sediments deposited during the last millennium. In this study, we investigated the feasibility of using post-IR IRSL signal from potassium feldspar to date the earthquake events of the last millennium by employing modern sag pond deposits with different sorting and expected equivalent dose(De)of 0Gy. Choosing an appropriate measurement procedure and identifying the well bleached pottassium feldspar grains are essential for post-IR IRSL dating of young sediments. The non-fading characteristic of the post-IR IRSL170 signal measured at 170℃ following a prior IR stimulation at 110℃ was verified by employing the De plateau test with respect to the signal integration interval and IR stimulation temperature together. Reducing the amount of potassium feldspar grains mounted on an aliquot would help reveal the among grains variation of bleaching level of post-IR IRSL170 signal before depostion and identify the most sufficiently bleached grains. Therefore, the post-IR IRSL170 De values of 2mm aliquots were measured for three samples with different sedimentary textures. The median of De distribution of well sorted and stratified sag pond deposits is consistent with the minimum De value inferred from the minimum age model(MAM-3) and finite mixture model(FMM), while for the poorly sorted deposits, the median is significantly overestimated compared with the minimum De values from the MAM-3 and the FMM. The minimum De values of 0.6~0.8Gy of all three samples are consistent with the unbleachable residual dose previously reported for post-IR IRSL signals measured at similar temperature for well bleached samples. It implies that by combined use of small aliquot and statistical age models, the well-bleached potassium feldspar grains could be identified. Such an intrinsic unbleachable component needs to be properly corrected when earthquake events of last millennium are to be dated in this area. Otherwise, the post-IR IRSL170 age would be overestimated by 200~300a.
The post-IR IRSL170 procedure investigated in this study is not only applicable for dating the paleoearthquake events along the Altyn Tagh Fault, but also with great potential to be applied to other tectonically active area. With consideration of the potential variability in post-IR IRSL signal characteristics of potassium feldspar grains from different origins, the signal stability needs to be routinely inspected. The modern analog sample would also be informative for justifying the measurement procedure and analytical method employed.
Reference | Related Articles | Metrics