In this paper, the seismic phase bulletin of 14381 earthquakes from January 1, 2009 to June 30, 2018 in the Weihe-Yuncheng Basin and its adjacent region were selected and analyzed. After removing the records with incomplete event information and insufficient station information, 11856 seismic events remained. A basic requirement for the double difference location method is that the distance between the pairs of seismic events is much smaller than the distance between the events and the stations and the linear scale of the velocity inhomogeneous body on the wave propagation path, so that the travel time difference between two earthquakes and the same station is only determined by the relative position between the two seismic events and the velocity of the seismic wave. In this case, the error caused by insufficient understanding of crustal structure can be effectively reduced and the result of relocation can be more accurate. Due to the large area, the whole study region was divided into three smaller parts for relocation of the events in order to reduce the influences of local structures. 8106 seismic events recorded by 52 stations were relocated using the double-difference location algorithm. It is found that the results constrained by the grid searching method are basically consistent with those obtained by other methods. The reliability of focal mechanism is affected by the number of initial motion and the azimuth distribution of the station. Therefore, when inversion of focal mechanism solution is carried out, earthquakes with more than 10 clear initial motion phases are selected, and the maximum azimuth gap between two stations with clear initial motion is required to be less than 90°. The azimuth coverage of the initial motion on the source sphere was measured according to azimuth and take-off angle distributions, and the focal mechanism solutions with poor coverage were eliminated. The contradiction ratio of focal mechanism solutions is less than 0.2. The average difference of b-axis of the best fitting solutions is less than 20°. Finally, the focal mechanism solutions of 346 seismic events with ML≥2 were determined with initial motion of P and S waves. Normal type and strike-slip type earthquakes are widely distributed, accounting for more than 60% of all seismic events, and most of them are concentrated near fault zones. Before the formal inversion, the study area was divided into 1°×1° grids, and a series of damping coefficients were set to obtain the trade-off curve between the residual error of data fitting and the length of the stress field inversion model. The crustal stress field of 1°×1° grid in Weihe-Yuncheng Basin was obtained based on focal mechanism solution and stress tensor damping inversion method, and a certain number of depth profiles vertical to the faults were constructed for the analysis. The results show that compared with the original locations of seismic phase bulletin, the distribution of seismic events after relocation is more concentrated along the fault strike in plane. Vertically, they are densely distributed along the fault plane. There are more earthquakes in and around Shanxi graben, but the magnitude is generally small. The seismic activity in Weihe rift is relatively weak. Before the relocation, the focal depth distribution was concentrated in 5~10km, but after the relocation, the focal depth distribution changed significantly. The earthquakes were concentrated in the range of 10~25km, the overall focal depth was concentrated in the range of 20km, and a small number of earthquakes occurred in the range of 25~35km. The focal depth in the basin is relatively shallow with depth range of 5~15km. The focal depth at both ends of the basin tends to deepen, and the deepest depth can reach about 30km, which is consistent with the results of previous studies. The results of the depth profiles show that most of the fault planes in the study area have a large dip angle, similar to the occurrence of the surface, and some fault planes are even nearly vertical. The motion properties of fault structure and focal mechanism indicate that the faults in the study area are mainly normal and strike-slip ones. The results of stress field inversion indicate that the R values, which indicate the stress state, of the other regions are all less than 0.5 except for some areas in the southeastern margin of the research area. The stress state of Weihe-Yuncheng Basin tends to be tensile, and the maximum horizontal principal stress direction is nearly EW in Weihe rift and NNE and NEE in southern Shanxi rift, which is basically consistent with previous studies.