Locating at eastern end of the Pamir Front Thrust(PFT),the Mushi anticline grows initiating from early-Pleistocene till now.The anticline,with a gentle south limb and steep north limb,outcrops Pliocene Atushi formation and lower-Pleistocene Xiyu formation.Topographic profiles and drainage pattern indicate the lateral growth of the anticline from west to east.Combining mapping data and seismic profiles from the neighboring area,we find the Mushi anticline is a detachment fold,with a total shortening of ~0.7km and a total uplift up to~1.5km.Northern part of the anticline is dominated by a series of wide,flat terraces.According to OSL samples,the age of the terrace T2a,T3and T4 is 15.8±2.4ka,55.1±10.3ka and 131.4±23.9ka respectively.Correlating with Marine Isotopic stages(MIS),the formation of terraces has some relationship with global climate change.As growing of the anticline,terrace surfaces deformed obviously,which is characterized by fault scarps,surface tilting or back-tilting,folding scarps and lateral tilting.Deforming patterns of the terrace surfaces indicate the Mushi anticline grows by limb rotation in late-Pleistocene.Using calculating models,we can confine the minimum shortening rate is 1.6±0.3mm/a and the minimum uplift rate is 1.9±0.3mm/a. Longitudinal profiles of terraces indicate the Mushi anticline grows laterally through limb rotation.According to relationship between uplift and lateral propagation,we can acquire a faster eastward lateral propagation rate of the anticline during the period of 131~16ka,with a rate about 14.6±3.6mm/a; however,since 16ka,the rate reduced to 1.7±0.3mm/a,implying the anticline tip stopped propagating to the east,and growing of the anticline was mainly dominated by lateral limb rotation in late Quaternary.
The Mushi anticline locates at the frontier Pamir arcuate nappe tectonics belt(PFT),which is a detachment fold with a gentle south limb and steep north limb,and its earth crust minimum shortening is ~0.7km with uplift up to 1.5km.The north limb fault of Mushi anticline is composed of a series of obsequent slope fault scarps,and the distribution of vertical displacements among different fault scarps presents a pattern of one increasing and the other decreasing.No matter of the entire western segment of the northern limb faults or a single fault,the displacement distribution is asymmetric,that is,high in the east and low in the west,and the same to displacement gradient.This may reflect the late Quaternary folding of Mushi anticline as being intensive in the east and feeble in the west.The fault may be a shallow,rootless secondary fault formed during the growth process of the anticline in order to accommodate the constantly decreased space of anticline nucleus as the fold tightened gradually.The late Quaternary shortening rate of the fault is 0.8mm/a,absorbing only one fifth of the nowadays crustal shortening rate of the region.The growth of Mushi anticline and the north limb fault of Mushi anticline both are in accordance with global fault dataset scaling relationship,that is,fault length is over 100m.The power-law regression scaling exponent of west segment of the northern limb fault of Mushi anticline is n=1.37(R2=0.88),and its specific value(k)of maximum fault displacement and fault length is far less than that of the Mushi anticline,which is ~4.3%,but 1~2 orders of magnitude larger than that of global fault dataset(10-4~10-5). This may show that the northern limb fault of Mushi anticline is the offshoot of several moderate strong earthquakes,and it is still in initial stages.
The western Tarim Basin is a convergent zone of the Southwestern Tianshan and the Pamir,and there have been big debates about its exact boundary.However,in the Mayikake Basin,the boundaries of two tectonic systems are very clear: the north-vergent Pamir Front Thrust is the leading edge of the Pamir,and south-vergent thrust at south limb of the Wulagen anticline,which was discovered in recent field study,is the south margin of the Southwestern Tianshan.The thrust created 7.5~17.6m high scarps on the Tk3(the high terrace of the Kezilesu river)and Tb3(the high terrace of the Bieertuokuoyi river),with an occurrence of 6°∠15°.To the west,the thrust cuts all terraces of the Bieertuokuoyi river and the underlying youngest alluvial fans ultimately.The total length of thrust trace is about 12km.As activity of the thrust,lots of subparallel flexural-slip scarps are formed on terrace surfaces,which make terrace surfaces obviously differential back-tilted(tilted to south),and the locations of tilted degrees changed are corresponding to locations of flexural-slip faults.Shortening at south limb of the Wulagen anticline is absorbed by the thrust and flexural-slip faults,which is about ~71.4m since abandonment of the high terrace.Regional correlation indicates the high terrace is the same surface as the T2 located at north limb of the Mushi anticline with the age of~16ka,which indicates the average shortening rate of south limb of the anticline in late Quaternary is~4.5mm/a.