There are carbonate rock, limestone and caves in the reservoir head area of Xiluodu Reservoir, which is the third largest reservoir in the world. After the impoundment, the water level has risen to about 140 meters, and consequently, more than 6 000 micro-earthquakes occurred on the reservoir head region, with magnitude of the vast majority being less than 1 and the maximum magnitude ML3. These micro-earthquakes concentrated within an area of 10km in width from the reservoir banks, 5km in depth, and 40km in length along the reservoir basin. These earthquakes did not affect the safety of the reservoir and dam. We inverted 700 focal mechanisms by using the waveforms recorded by the reservoir's digital seismic network before and after the impoundment, and further inverted the stress field of the whole reservoir head region and the sub-regions. The results show a complex orientation of focal mechanism, different rupture types, and uneven and unstable stress state, which is not in consistency with other regional stress fields obtained by a lot of natural earthquakes, indicating the reservoir induced seismicity is not strictly controlled by the regional stress field. According to the analysis, the reservoir water flows into caves, penetrating into cracks and joints, leading to increase of pore pressure, reducing the friction and fracture strength of rocks, and generating elastic deformation caused by the increased load of reservoir water. The joint actions of these may be the cause of the earthquakes. The accumulated regional stress and local stress were released first, then, the additional stress produced by the reservoir water loading was dominating. There are no major active faults in the reservoir head area. Reservoir water level will rise again by tens of meters in 2014. With the penetration of cracks, the adjustment of stress field, and the backflow of water which will inundate the upstream region of the reservoir basin, the possibility of occurrence of moderate earthquakes cannot be ruled out. The seismic fortification criteria are high for the dam of Xiluodu Reservoir, so these earthquakes will not cause safety problems. We suggest carrying out detailed hydro-geological, geophysical explorations during the continuous active period of the reservoir-induced seismicity to obtain accurate scientific data for determining the causes of induced seismicity and searching for the technical approaches for controlling the induced seismicity. These measurements will mitigate the impact of emergencies and play an exemplary role for the other similar reservoirs.