Running across the Zhenjiang and Nanjing area, the Mufushan-Jiaoshan Fault is an important near EW-trending fault in Nanjing and Zhenjiang area. It extends from Mufu Mountain through Yanziji, Qixia Mountain, and Longtan to Jiao Mountain of Zhenjiang, with a total length of about 75km. The overall trend of the Mufushan-Jiaoshan Fault is nearly east-west, dipping to the north, the southern side of the fault is Ningzhen Mountain, the north side is the hollow land along the river and the Yangzhou low hilly plain. The fault is divided into the western and eastern sections by the NW-trending fault near Xiashu Town in Jurong, namely the Mufushan-Qixiashan section and the Zhenjiang section. Due to the long-term activity of the Mufushan-Jiaoshan Fault, the northern part of the Mufu Mountain, Qixia Mountain and other complex anticlines suffered large-scale fault depression, forming the Yizheng Sag in the north and the Ningzhen Uplift in the south of the Yangtze River. There is a significant differential up-and-down movement of the fault block along the fault. In the Yizheng Sag, there are huge deposits of the Upper Cretaceous, as well as the thicker Paleogene and Neogene, indicating that the Mufushan-Jiaoshan Fault is a long-term active normal fault. On the Bouguer gravity anomaly map and aeromagnetic anomaly map, the expressions of the Mufushan-Jiaoshan Fault are very obvious, indicating that the fault has a large cutting depth and is a large-scale fault. There have been many destructive earthquakes in the Nanjing-Zhenjiang area, most of which occurred at the intersection of NW-trending faults and near-EW-trending Mufushan-Jiaoshan Fault. In particular, the Yangzhou M6 earthquake in 1624 had a great impact, and the Mufushan-Jiaoshan Fault is possibly the seismogenic structure of this earthquake. With the planning and construction of a series of Yangtze River crossing passages across the fault in Nanjing and Zhenjiang, whether the Mufushan-Jiaoshan Fault is an active fault and whether it has a greater earthquake risk also becomes the focus of attention in this area. It is of great significance to study the nature, characteristics and the latest active times of the Mufushan-Jiaoshan Fault for the prevention and reduction of earthquake disaster in Zhenjiang city and Nanjing city. Previous work mainly focused on the Nanjing section, and judged that its latest activity age is late Middle Pleistocene; there has not been a systematic study on the fault in the Zhenjiang section, and its latest activity age is still unclear. Based on the project of “Urban active fault exploration and seismic risk assessment in Zhenjiang City”, we carried out a series of shallow seismic explorations along the Mufushan-Jiaoshan Fault in the Zhenjiang section, and on this basis, representative points were selected to carry out drilling joint profiling to study the Quaternary activity characteristics of the Mufushan-Jiaoshan Fault. The results are of great significance for urban earthquake disaster reduction, urban planning and land use. The results of shallow seismic exploration show that the Zhengjiang section of the Mufushan-Jiaoshan Fault is dominated by normal faulting, and the trend is NEE, dipping to the north, with a dip angle of about 50°~60° and a displacement of 3~7m on the bedrock surface. All breakpoints of Mufushan-Jiaoshan Fault show that only the bedrock surface was dislocated rather than the interior stratum of Quaternary. On the Qiaotou village site, there is no sign of dislocation in the stratum above the Middle Pleistocene, the lower part of Middle Pleistocene Xiashu formation has been dislocated, the displacement of the bottom boundary of the Middle Pleistocene on both sides of the fault is 3.2m. According to the characteristics of dislocated stratum, the latest active age of Mufushan-Jiaoshan Fault is late Middle Pleistocene. There is no evidence of activity since late Pleistocene. The fault activity is dominated by normal faulting on the Jinshan site, and there is no evidence of faulting in the Holocene. Based on the comprehensive analysis, the latest active age of the Zhenjiang section of the Mufushan-Jiaoshan Fault is the late Middle Pleistocene, and there is no evidence of activity since the late Pleistocene. According to the dating results, the latest activity time is after(222±22)ka and before the late Pleistocene. Affected by the erosion of the Yangtze River, the Quaternary in the study area is dominated by the Holocene, the Lower Pleistocene is absent, and the Middle Pleistocene is absent or thin. Therefore, the stratum displacement identified by drilling is mainly developed in the bedrock and the bottom of the Quaternary, resulting in the uncertainty of identifying the latest displacement of the fault, and it is difficult to identify the precise magnitude of the displacement. This is the shortcoming of this work. Mufushan-Jiaoshan Fault is a major fault with strong seismic risk in the Nanjing-Zhenjiang area, especially at the intersection between the fault and the NW-trending fault, which has the seismogenic environment of destructive earthquake. It is necessary to attach great importance to the prevention of earthquake damage in the relevant area.
On 21 May 2021, a great earthquake of M6.4 struck Southwest China. This catastrophic event caused extensive casualties, a large number of houses collapsed, traffic disrupted, and large bridges damaged in Yunnan Province. The epicentre of the Yunnan Yangbi earthquake is located near the NW trending Weixi-Qiaohou-Weishan Fault. After this earthquake, the Institute of Geophysics of China Earthquake Administration calculated the focal mechanism solution using the global network data, the result shows that the earthquake is a strike-slip faulting event with normal component. The result of the focal mechanism solution is consistent with the strike of the Weixi-Qiaohou Fault and the distribution of aftershocks. Therefore, the strike of seismogenic structure of this earthquake was determined to be NW. Based on the strong motion observation data of 21 strong motion seismographs and 304 seismic intensity meters, the earthquake ground motion intensity map of the 21 May, 2021 Yangbi, Yunnan earthquake was obtained using the deviation correction method of magnitude shift, considering the geological tectonic background of the seismogenic fault, the focal mechanism solution and the precise location of aftershocks of this event. A commonly used proxy VS30, the time-averaged shear wave velocity to 30m depth, was used to account for the local site effect of ground motion in the calculation of ground motion intensity map. We used VS30-based amplification terms, which depends on the amplitude and frequency of ground motion, to account for site amplification. The VS30 data of the macroscopic site classification was estimated using the correlation between topographic gradient and VS30. Ground motion prediction equations(GMPEs) was used to supplement sparse data in its interpolation and estimation of ground motions. The selection of GMPEs for ground motion estimation were the attenuation relation of peak acceleration in western China in the fourth generation seismic zoning map. The observations of the ground motion for this event show that the maximum horizontal peak ground acceleration is 720.3cm/s2 on the Yangbi station, 7.9km from the epicentre. Horizontal peak ground acceleration at 14 seismic stations is greater than 45cm/s2. A large number of remote observation records with small values of ground motion also revealed the attenuation characteristics of ground motion for this earthquake. Using strong motion observation data available, we computed an event bias that effectively removed the inter-event uncertainty from the selected GMPE. The deviation correction method of magnitude shift minimizes the systematic deviation between the observed and estimated data produced by ground motion prediction equation, and reduces the uncertainties of the ground motion estimation in the area without stations. After the ground motion observations were corrected(de-amplified) to “rock”, we flagged any data that exceed three times the sigma of the GMPE at the observation point as abnormal data. The bias was then recalculated using different earthquake magnitudes and the flagging was repeated until systematic deviation between the observed and estimated data produced by GMPE was minimal. The results of the earthquake ground motion intensity map show that the highest seismic intensity caused by Yangbi earthquake is Ⅷ. Cangshanxi Town in Yangbi County and Taiping Town are located in the seismic intensity Ⅷ area. The area of seismic intensity Ⅵ and above covers an area of about 6 500km2, spreading northwest in general. Many roads including Expressway G56 and national highway G215, pass through the estimated seismic intensity Ⅶ area, which may cause road damage and traffic disruption following this earthquake. On the other hand, the reliability of small amplitude observations recorded by far-field simple intensity meters need to be evaluated further. Finally, the seismogenic tectonic setting, the focal mechanism solution and the aftershock distribution of the earthquake also play a macro-control role in the distribution of the earthquake ground motion intensity. The results of this paper can provide theoretical basis and reference for earthquake emergency response decision-making and provide input for earthquake disaster emergency assessment.