In this paper,we present a method which allows to calculate the mean stress field according to the total seismic moment released by earthquakes.The exact method is as follows: First,we calculate the scalar seismic moment released by each earthquake according to the statistical relationship between earthquake magnitude and its seismic moment; Second,we calculate the seismic moment tensor released by each earthquake according to the relationship between focal mechanism solution and seismic moment tensor; Then,we can get the total seismic moment tensor released in a specific time period of the study area; Finally,we calculate the eigenvector and eigenvalue of the total seismic moment tensor,the obtained eigenvector is corresponding to the mean stress field direction released by the study area. We tested the method by using the synthetic focal mechanism to which random error was added and with the focal mechanism data of Tangshan aftershock zone.The testing results show that,the released stress field of the study area obtained by our method is in consistency with the regional stress field. So our method can be applied to solve regional stress field.The more focal mechanism data used,the more stable the result would be,and closer to the real regional stress field. One of the advantages of this method is that it uses magnitude as the weight of each earthquake,so the contribution difference of the earthquake size in the stress field inversion can be better reflected. Another advantage is that it does not need to know which nodal plane of the focal mechanism is the real fault plane when we calculate stress field.
The precisely located earthquake catalogue is important to seismicity, seismic tomography and crustal stress inversion studies. It also has great application value in rapid report of an earthquake that just occurred. By considering the arrival time uncertainty, and the constraints on station elevation and seismic depth, we propose a relatively accurate method to estimate hypocentral location and its uncertainty based on inversion theory. Our method can combine the arrival times of Pg wave, Sg wave, Pn wave and Sn wave in hypocenter location, so it increases the location accuracy by involving more data; and it can be also used in local and regional earthquake location simultaneously. In order to test our location method, we located earthquakes by using the simulated data with different uncertainty of Pg,Sg,Pn,Sn arrivals. The result shows that the location determined by using our method is more accurate than that by using other method. We apply it to earthquakes occurring in the period from 2001 to 2008 in Sichuan area, and obtained a more clustered hypocentral distribution convergent to the fault zones. The result provides a solid foundation for studies of seismicity, geometry of the active faults and seismic tomography in Sichuan region. It is also helpful to study the seismicity precursors before the Wenchuan earthquake.