Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
DETERMINATION OF FAULT PLANE PARAMETERS IN THE LONGTAN RESERVOIR BY USING PRECISELY LOCATED SMALL EARTHQUAKE DATA AND REGIONAL STRESS FIELD
YAN Chun-heng, ZHOU Bin, LI Sha, XIANG Wei, GUO Pei-lan
SEISMOLOGY AND GEOLOGY    2020, 42 (3): 562-580.   DOI: 10.3969/j.issn.0253-4967.2020.03.002
Abstract558)   HTML    PDF(pc) (3927KB)(309)       Save
The Longtan reservoir is located in Tian'e County, Guangxi Zhuang Autonomous Region, southwestern China on the upper reaches of Hongshui River, the main stream of the Pearl River. The dam of the reservoir is 200m high, and the maximum water depth can be up to 194m as the water level reaches 400m. The reservoir storage capacity is 27.3 billion cubic meters, so it is a typical high-dam reservoir with large storage capacity. Terrain of the reservoir is high in the west and low in the east. The reservoir is located at the confluence of the Hongshui River, Buliu River, Nanpan River, Beipan River, Mengjiang River and Caodu River. The construction of Longtan hydropower station officially started in July 2001, and the reservoir impoundment was on September 30, 2006. The power station is equipped with 9 sets of 700 000kW water turbine generator units, with a total installed capacity of 6.3 million kW and an average annual generating capacity of 18.7 billion kW·h. So its storage and hydropower capacity rank third only to the world-famous Three Gorges hydropower project and the ultra-large hydropower project in Xiluodu of Jinsha River in China. Seismicity enhanced rapidly in the reservoir area after the impoundment. More the 5 000 earthquakes have been recorded so far, with the maximum magnitude of ML4.8, which occurred on September 18, 2010. The earthquakes are mainly concentrated in the deep water area where fault zones run through. Assuming the seismogenic fault can be simulated by a plane and most small earthquakes occur nearby the fault plane, the information of seismogenic fault can be obtained by the hypocenter location parameters of small earthquakes.
Reference | Related Articles | Metrics
COMPREHENSIVE ANALYSIS OF RECENT GRAVITY AND CRUSTAL DEFORMATION IN NORTHWESTERN GUANGXI
WEN Xiang, ZHOU Bin, SHI Shui-ping, QIN Jian, LI Jia-ning, HE Yan, YAN Chun-heng, LUO Yuan-peng
SEISMOLOGY AND GEOLOGY    2019, 41 (4): 927-943.   DOI: 10.3969/j.issn.0253-4967.2019.04.008
Abstract531)   HTML    PDF(pc) (8550KB)(162)       Save
Northwest Guangxi is located in the Youjiang fold belt and the Hunan-Guangxi fold belt of secondary structure unit of South China fold system. The South China fold was miogeosyncline in the early Paleozoic, the Caledonian fold returned and transformed into the standard platform, and the Indosinian movement ended the Marine sedimentary history, which laid the basic structural framework of this area. Since the neotectonic period, large areas have been uplifted intermittently in the region and Quaternary denudation and planation planes and some faulted basins have been developed. Affected by the strong uplift of Yunnan-Guizhou plateau, the topography of the region subsides from northwest to southeast, with strong terrain cutting and deep valley incision. Paleozoic carbonate rocks and Mesozoic clastic rocks are mainly exposed on the earth's surface, and its geomorphology is dominated by corrosion and erosion landforms. The dating results show that most of the structures in northwest Guangxi are middle Pleistocene active faults, and the movement mode is mainly stick-slip. According to the seismogeological research results of the eastern part of the Chinese mainland, the active faults of the middle Pleistocene have the structural conditions for generating earthquakes of about magnitude 6. In the northwest Guangxi, the crustal dynamic environment and geological structure are closely related to Sichuan and Yunnan regions. Under the situation that magnitude 6 earthquakes occurred successively in Sichuan and Yunnan region and magnitude 7 earthquakes are poised to happen, the risk of moderately strong earthquakes in the northwest Guangxi region cannot be ignored. Based on the analysis of deep structure and geophysical field characteristics, it is concluded that the Tian'e-Nandan-Huanjiang area in the northwestern Guangxi is not only the area with strong variation of the Moho surface isobath, but also the ML3.0 seismic gap since September 2015, and the abnormal low b value area along the main fault. Regions with these deep structural features often have the conditions for moderately strong earthquakes. The paper systematically analyzes the spatial and temporal distribution features and mechanism of regional gravitational field and horizontal crust movement and further studies and discusses the changes of regional gravitational field, crustal horizontal deformation and interaction between geologic structure and seismic activity based on 2014-2018 mobile gravity measurements and 2015-2017 GPS observation data in the northwestern Guangxi. The results show that:1)On July 15, 2017, a MS4.0 earthquake in Nandan happened near the center of four quadrants of changes of gravity difference, and the center of abnormal area is located at the intersection of the Mulun-Donglang-Luolou Fault, the Hechi-Nandan Fault and the Hechi-Yizhou Fault. The dynamic graph of differential scale gravitational field reflects the gravity changes at the epicenter before and after the Nandan earthquake, which is a process of system evolution of "local gravity anomaly to abnormal four-quadrant distribution features → to earthquake occurring at the turning point of gravity gradient zone and the zero line to backward recovery variation after earthquake". Meanwhile, according to the interpretation of focal mechanism of the Nandan earthquake, seismogram and analysis of seismic survey results, the paper thinks that the four-quadrant distribution of positive and negative gravity, which is consistent with the effect of strike-slip type seismogenic fault before Nandan earthquake, demonstrates the existence of dextral strike-slip faulting; 2)The pattern of spatial distribution of gravitational field change in northwestern Guangxi is closely related to active fault. The isoline of cumulative gravity generally distributes along Nandan-Hechi Fault and Hechi-Yizhou Fault. The gravity on both sides of the fault zone is different greatly, and gradient zone has influences on a broad area; the spatial distribution of deformation field is generally featured by horizontal nonuniformity. Tian'e-Nandan-Huanjiang area is located at the high gradient zone of gravity changes and the horizontal deformation surface compressional transition zone, as well as near the intersection of Hechi-Yizhou Fault, Hechi-Nandan Fault and Du'an-Mashan Fault; 3)The geometric shape of gravitational field in northwestern Guangxi corresponds to the spatial distribution of horizontal crustal movement, which proves the exchange and dynamic action of material and energy in the region that cause the change and structural deformation of fault materials and the corresponding gravity change on earth's surface. The recent analysis of abnormal crustal deformation in northwestern Guangxi shows that Tian'e-Nandan-Huanjiang is a gradient zone of abnormal gravity change and also a horizontal deformation surface compressional transition zone. It locates at the section of significant change of Moho isobaths, the seismicity gap formed by ML3.0 earthquakes and the abnormal low b-value zone. According to comprehensive analysis, the region has the risk of moderately strong earthquake.
Reference | Related Articles | Metrics
SOURCE PARAMETERS OF THE CANGWU MS5.4 EARTHQUAKE, 31 JULY, 2016
ZHOU Yi, YAN Chun-heng, XIANG Wei, ZHOU Bin, WEN Xiang
SEISMOLOGY AND GEOLOGY    2019, 41 (1): 150-161.   DOI: 10.3969/j.issn.0253-4967.2019.01.010
Abstract545)   HTML    PDF(pc) (3548KB)(360)       Save
On July 31st, 2016, an earthquake of MS5.4 occurred in Cangwu County, Guangxi Zhuang Autonomous Region, which is the first MS ≥ 5.0 earthquake in coastal areas of southern China in the past 17a. The moderate earthquake activities have come into a comparatively quiet period in coastal areas of southern China for decades, so the study about the Cangwu MS5.4 earthquake is very important. However, differernt research institutions and scholars have got different results for the focal depth of the Cangwu MS5.4 earthquake. For this reason, we further measured the focal depth by using CAP method and sPL phase method.
sPL phase was first put forward by Chong in 2010. It is often observed between P and S wave of continental earthquakes with epicentral distance of about 30km to 50km. The energy of sPL phase is mainly concentrated on the radial component. Arrival time difference between sPL phase and direct P wave is insensitive to epicentral distancs, but increases almost linearly with the increase of focal depth. Based on these characteristics and advantages, sPL phase method is chosen to measure the focal depth of Cangwu MS5.4 earthquake in the paper.
First of all, we selected the broadband waveform data through seismic stations distributed mainly in Guangxi and adjacent provinces from Data Management Centre of China National Seismic Network and Guangxi Earthquake Networks Center. And an appropriate velocity model of Cangwu area was constructed by the teleseismic receiver function method. Then, the focal mechanism and focal depth of Cangwu MS5.4 earthquake were determined by using the CAP(Cut and Paste)method. Next, we compared the synthetic waveforms simulated by F-K forward method of different focal depth models with the actual observed waveforms. According to the difference of arrival times between sPL and Pg phases, we finally obtained the focal depth of Cangwu earthquake. The results show that the focal depth is 11km measured by CAP method and 9km by sPL phase method. Based on the focal mechanism solution, isoseismal shapes, aftershocks distributions and investigation on spot, we conclude that the Cangwu MS5.4 earthquake is a left-lateral strike-slip earthquake which occurred in the upper crust. Our preliminary analysis considers that the seismogenic structure of Cangwu earthquake is a north-northwest branch fault, and the control fault of this earthquake is the Hejie-Xiaying Fault.
Reference | Related Articles | Metrics
ANALYSIS ON THERMAL INFRARED ANOMALOUS TEMPERATURE INCREASE OF MODIS SATELLITE BEFORE YUTIAN MS7.3 EARTHQUAKE
WEN Xiang, CHEN Mei-hua, YAN Chun-heng, ZHOU Bin
SEISMOLOGY AND GEOLOGY    2015, 37 (3): 893-905.   DOI: 10.3969/j.issn.0253-4967.2015.03.018
Abstract362)      PDF(pc) (5379KB)(585)       Save

In this study, the continuous thermal infrared data of MODIS/Terra satellite remote sensing of the Yutian MS7.3 earthquake area from January 2014 to February 2014 are collected, and by cloud-removing, the thermal infrared data between 4:00am-6:00am in Beijing time which is the best period for observation to conduct land surface temperature data retrieval, are selected. Time evolution process of land surface temperature anomalies before and after the earthquake is analyzed as well as the relationship between abnormal spatial distribution and active fault. Then, the impact of non-structural factors such as topography of earthquake area, seasonal climate, rain and snow on land surface temperature anomalies is discussed. The result shows that: a)There was phenomenon of thermal infrared abnormal temperature increase appearing near the epicenter area one month before the Yutian earthquake, and there was a certain correspondence between the abnormal temperature increase and earthquake occurrence time. The significant temperature increase happened in the first half of the month, while 5 to 6 days before the earthquake, the abnormal increase reached its peak, and the temperature dropped rapidly after the earthquake. b)Through the relative analysis of non-structural factors such as earthquake area's topography and landform, seasonal weather, rain and snow, the anti-seasonal structural "temperature increase" signals were discovered, and the rain and snow had a certain degree of influence on the abnormal temperature increase of the earthquake area. c)Due to the complex and sensitive fault structures of the valleys and basins at the southwest of the epicenter, the thermal infrared abnormal temperature increase usually starts from this area and gradually migrates to the epicenter along the faults. d)Abnormal temperature increase zone presents strip distribution which is in consistent with the NE-striking main fault zone. After full consideration of the influence of non-structural factors on the abnormal temperature increase, it was inferred that this thermal infrared temperature increase could be a short-imminent precursor before the earthquake.

Reference | Related Articles | Metrics