The Sichuan-Yunnan region is located in the southeastern part of the Qinghai-Tibet Plateau. Because of the compression and collision dynamics of the Indian Plate and the Eurasian Plate, the tectonic deformation is strong and seismic activities occur frequently. There have been many earthquakes above magnitude 7.0 in history. A series of active fault zones have developed in the region, among which the Sichuan-Yunnan rhombus block bounded by multiple active faults has attracted great research interests in recent years. The Longpan-Qiaohou fault zone is a boundary fault of the Sichuan-Yunnan rhombus block. The fault zone starts from Longpan in the north, passes through Jiuhe, Jianchuan, and Shaxi in the south, and ends at Qiaohou. It is about 120km long and the fault trend is 15°~20°. This fault zone is large in scale and highly active, with frequent seismic activity, complex mechanical properties, and variable movement patterns. The Mesozoic movement was intense. In the early Cenozoic, compression-thrust movement was dominant, and in the late Cenozoic, tension-strike movement was dominant. Since the Holocene, the fault zone has been characterized by left-lateral strike-slip movement with normal faulting properties, and earthquakes of magnitude 5 or above have occurred many times. Therefore, studying the activity of this fault zone is of great significance for the prediction and evaluation of regional strong earthquake risk. Thick calcite veins are well developed on the Henancun Fault of the Jianchuan section of the Longpan-Qiaohou fault zone, providing very valuable materials for fault dating. Calcite veins are coseismic rapid precipitation formed during seismic activity or syntectonic precipitation that filled along fractures after seismic activity. Therefore, their ages represent the latest time at which seismic activity occurred. Previous studies have shown that tensional fissures formed during coseismic events can close in a short period of time(days to months), suggesting that the filling of calcite veins within fault fissures is a relatively rapid process. This paper uses the ESR method to conduct dating study on the calcite veins in the study area. The results show that the ages of the four calcite veins(HNC-ESR01, HNC-ESR02, HNC-ESR03 and HNC-ESR04) are: (7.1±0.8)ka, (7.1±0.9)ka, (7.3±1.7)ka and (6.9±1.5)ka, respectively. The age results are concentrated, and the average age is(7.1±1.3)ka, indicating that the fault was active no later than(7.1±1.3)ka. The age results are consistent within the error range with the second paleoseismic event time revealed by trenching work in the area(between(6 130±30)a BP and(6 320±40)a BP), indicating that the dating of ESR in the fault zone is an effective dating method for the study of active tectonics and paleo-earthquakes. It is an effective chronological method for research, but it can be seen that compared with 14C and luminescence dating, the error of ESR results is relatively large. For faults with short earthquake recurrence intervals, it is still very challenging to accurately judge their activity. In the follow-up work, it is necessary to further improve the experimental process and reduce experimental errors, including refinement of sample pretreatment, accurate monitoring of irradiation dose, and accurate calculation of dose rate. In addition, by using five fitting functions(LIN, SSE, DSE, EXP+LIN and Dgamma)to calculate the equivalent dose values of calcite vein samples in this study, we found that the SSE function is capable of providing the best fitting effect.
The research on the activity history of seismogenic faults is the basis for the research and prevention of natural disasters such as earthquakes and landslides. Dating has always been the focus and difficulty of the research on the activity history of fault. However, it is difficult to carry out geochronological surveys for faults and landslides evolution in the carbonated areas due to the lack of suitable dating materials, such as the region of south-eastern Tibet where the main lithology is carbonate bedrock. The exposure dating of cosmogenic nuclides is the main method to determine the activity history of fault. But the cosmic nuclides 36Cl and 14C dating methods still have some limitations, such as the complex generation mode of 36Cl being caused by fission under the action of cosmic rays, neutron capture and meson action, the yield of 36Cl being changed with chemical composition change of dating mineral(the range of 2-171atom/g·a), and so on. More importantly, the rapid rock weathering in the carbonate bedrock area is a big problem. Once exposed, the bedrock will start rapid weathering and erosion and dissolution. Therefore, it is necessary to find new dating materials or dating methods in carbonate bedrock areas, especially in areas with little or no quaternary sediments. When a large landslide moves on the sliding surface of carbonate bedrock, heat is often generated due to high-speed friction, and then the dynamic metamorphism can occur easily on the sliding surface to form recrystallized carbonate, which can be used to determine the active time of faults.
Carbonate is one of the main materials for ESR dating. As early as the 1970s, Ikeya made the first electron spin resonance(ESR)dating study of carbonates using stalactite calcite. After that, many researches on the ESR signal characteristics of carbonate(such as coral, shell, aragonite, stalagmite and etc)were carried out, and the carbonate ESR dating then became one of the main methods in Quaternary chronology and had been widely used. The recrystallized carbonate on the fault friction surface and the sliding surface of the landslide is a newly discovered dating material. Although its main component is calcium carbonate, its origin is different from the carbonate materials commonly used in ESR dating(such as stalagmite, stalactite, etc.), so it is necessary to study its characteristics of ESR dating.
The characteristics of recrystallized carbonate collected from the fault friction surface of Jianchuan section on Lijiang-Xiaojinhe Fault(Yin et al., 2021)and the sliding surface of Qiaojia landslide which is located at the intersection of Xiaojiang Fault and Zemuhe Fault(Liu et al., 2023)have been studied, including microstructure, thermal annealing characteristics, sunlight bleaching characteristics, and compared with the previous dating results of AMS 14C and OSL on sediments. Yin et al.(2021)and Liu et al.(2023)analyzed and demonstrated the feasibility and reliability of the recrystallized carbonate ESR dating method used in the analysis of bedrock fault and landslide activity in the carbonate bedrock area, and established the recrystallized carbonate ESR dating technology.
Therefore, the ESR dating of recrystallized carbonate is an effective dating technology and can be used widely for the studying of activity history of faults and landslides in carbonate bedrock areas. This paper introduced the latest research progress of recrystallized carbonate ESR dating in the Carbonate rock area of southwest China by Yin et al.(2021)and Liu et al.(2023). In this paper, the requirements for sample collection and the range of dating were proposed which provide technical support for dating of key geological samples for research on fault and landslide activity history, engineering exploration, active structure, and seismic risk assessment in Carbonate rock bedrock area.
Uplift of Tibet Plateau and formation of Asian Monsoon greatly affect East Asian geomorphological evolution, climate change and environment systems. Thus, those phenomena also control the origin, size and direction of river systems. The Yangtze River, as the most important linkage between Tibet Plateau and the East Asian marginal seas, delivers large volumes of water, sediment, and associated chemicals from its headwater regions and tributaries to the East China Sea, significantly influencing sedimentary system evolution in its drainage basin. Therefore, the formation of the modern Yangtze River and its geological-time evolution history have been paid more and more attention to since the beginning of the last century. After debated for more than a century, the First Bend in Shigu area and the Three Gorges have been known as the key capture point of the Yangtze River’s evolution history. In particularly, the Three Gorges incision period remains greatly controversial, which mainly focuses on Cretaceous period-Neogene period, early Pleistocene period, and late Quaternary period.The Yichang Gravel, just located downstream and outlet of the Three Gorges with an inverted triangle shape, is mainly distributed in western Jianghan Basin with over 1 000km2. Because of its wide distribution and key geographical location, many typical profiles of Yichang Gravel have been the critical materials for studies on stratigraphic division, geomorphic evolution, and paleoenvironment change in middle Yangtze River Basin, especially on the Three Gorges incision history. Based on the previous field investigation, the Yichang gravel unconformably overlies the Cretaceous bedrocks and underlies the mid-Pleistocene vermicular red earth. In addition, studies on heavy mineral assemblages, Pb isotopic compositions of detrital K-feldspar grains, magnetic characteristics as well as pollen assemblage characteristics have showed that sediments in Yichang Gravel are mainly derived from upper Yangtze River Basin, such as Jinshangjiang drainage, Minjiang drainage, Jialingjiang drainage and Wujiang drainage. Based on the above comprehensive analysis, researchers demonstrated that the depositing time of Yichang Gravel can best constrain the Three Gorges incising time.The absolute altitude of Yichang Gravel exceeds 110m, and many thick sand lens are developed from top to bottom of the profiles. In this study, we applied the quartz Ti-Li center ESR dating method in Yichang Gravel to determine its absolute formation age, and then to constrain the minimum cutting-through time of Three Gorges. Eight samples(SXY-1, SXY-2, YC-1—4, LJY-1, LJY-2)were collected from the sand lens at depths of 4m, 19m, 40m, 51m, 63m, 75m, 83m and 99m respectively from the top of the profile. At the same time, in order to evaluate the residual dose of Ti-Li center after sunlight bleaching, we also sampled four modern surface Yangtze River sediments near Yichang Gravel for ESR measurement.The result shows that the quartz Ti-Li center ESR signal intensity of the 4 modern fluvial sediments samples are zero, which implies that the Ti-Li center ESR signal intensity of quartz in Yichang Gravel sand lens could be bleached to zero before the last burial. Thus, the above results indicate that the ESR dating results of this paper are reliable. The ESR absolute age from top to bottom of the profile is 0.73Ma BP,0.87Ma BP,0.98Ma BP,1.04Ma BP,1.05Ma BP,1.10Ma BP, 1.11Ma BP, 1.12Ma BP, respectively. The ESR dating results show that the Yichang Gravel began to deposit at about 1.12Ma BP until 0.73Ma BP, and the Ti-Li center ESR age indicates that the Yangtze River cut through Three Gorges area no later than 1.12Ma BP.
Xiangshan-Tianjingshan Fault is one of the major active faults of the arc fault zone on the northeastern margin of the Qinghai-Tibet Plateau. The Yellow River in the Shapotou area flows through the fault and forms a perfect "Ω-shape" bend. Shapotou not only is a tourist mecca,but also a hotspot for studying the geomorphology,neotectonics,the uplift of Qinghai-Tibet Plateau and other issues. Xiangshan-Tianjingshan Fault is mainly a left-lateral strike-slip fault with a minor thrust component. So to study the fault's offsets is of vital importance. This paper,based on the characteristic of the distribution of the Yellow River terraces in the Shapotou Big Bend area,analyzes the offsets of the Xiangshan-Tianjingshan Fault since the formation of the terraces. The results reveal that 3 river terraces are developed on the right of the Yellow River in the Shapotou area,while there is no terrace developed on the left of the river. The maximum left-lateral displacement of Xiangshan-Tianjingshan Fault is less than 880m,and the slip rate is less than 5.18mm/a since 170ka BP.
The Changbaishan Tianchi volcano is one of the most famous volcanoes in China. It erupted many times in the Holocene time. The top of this volcano is regionally covered by some yellow material (pyroclastics), the origin of which has been under debating since its discovery. Based on the information provided by the eruption of Mount St Helens of USA on May 18th, 1980, in conjunction with the chemical composition and distribution characteristics of the yellow materials, we estimated that it resulted from hot water metasomatism during the Millennium eruption, rather than a separate product of an individual volcanic event.
Because of lack of Quaternary volcano activity in China,Quaternary sediments become the main dating material in the study of geological structure, topographic feature and environment evolution,etc.ESR is a potential dating method for the sediments older than 200ka.After sunlight bleaching or heating,the quartz ESR signals,including E'-,Ge-,Al-,Ti-center,can attenuate or be reset.The sediments deposited during Quaternary period only have the effect of sunlight bleaching before the last burial time.Therefore,the sunlight bleaching characteristics of ESR signal centers is one of the most important factors in ESR dating.In this study,the paper firstly makes a simple introduction on the ESR theoretical basis and the measuring process of dose rate(D) and equivalent dose(ED),and then,reviews the sunlight bleaching characteristics and the applications in Quaternary geochronology of different ESR signal centers.The E'-center ESR signal increases with the sunlight bleaching during first 72 hours,it is not suitable for the sediment dating.Ge-center ESR signal is bleachable and can be reset after several hours sunlight bleaching,so,it is the most light sensitive signal center.However,it is very difficult to measure the Ge-center ESR signal in laboratory because it is very weak.Al-center can attenuate 20 percent after 2 hours sunlight bleaching and after tens to hundreds of hours bleaching it still maintains a stable residual signal,50-80 percent.The remnant signals are not equal under different sediment environment.We usually gain a bigger age using Al-center ESR signal for the uncertain remnant.Ti-center ESR signals can be totally bleached after tens to hundreds of hours sunlight bleaching,and this ESR signal also has enough intensity for measurements.According to the review of all the ESR signal centers' sunlight bleaching characteristics and several successful application examples,we suggest that Ti-center ESR signal is more suitable than others for the ESR dating of Quaternary sediment.