Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
GRAVITY VARIATION BEFORE AND AFTER THE MS5.4 EARTHQUAKE IN CANGWU IN 2016
ZHOU Bin, WEN Xiang, YUAN Yong-dong
SEISMOLOGY AND GEOLOGY    2018, 40 (3): 539-551.   DOI: 10.3969/j.issn.0253-4967.2018.03.003
Abstract641)   HTML    PDF(pc) (4942KB)(439)       Save
Based on the mobile gravity observation data in 2014-2016 in Guangxi and its adjacent areas, this paper systematically analyzed the changes of regional gravity field and its relation to the MS5.4 Cangwu, Guangxi earthquake on July 31, 2016, and combined with GPS observation data and seismic geological survey results, discussed the temporal and spatial distribution characteristics of the changes of regional gravity field and its mechanism. The results show that:(1) Before and after the MS5.4 Cangwu earthquake, the gravity anomaly changes near the earthquake area were closely related to the major faults in space, which reflects the crustal deformation and tectonic activities that caused the surface gravity change along the seismogenic fault in the period of 2014-2016; (2) The gravity changes near the epicenter before and after the MS5.4 Cangwu earthquake showed an evolution process in which the positive gravity anomaly zone changed to the negative gravity anomaly zone, a gravity gradient belt appeared along NNE direction and the earthquake occurred in its reverse change process; (3) The epicenter of the MS5.4 Cangwu earthquake located both near the gravity gradient belt and in the zero transition zone of the surface strain gradient and the edge of the high maximum shear strain rate area, the observational fact further proved that the dynamic image of gravitational field and deformation field have important instruction significance to the location prediction of strong earthquakes; (4) in recent years, the gravity dynamic change in northwestern Guangxi presented a four-quadrant distribution pattern, and there is the risk of generating earthquake of magnitude about 5 in the center of the quadrants.
Reference | Related Articles | Metrics
analysis on modis satellite thermal infrared information before and after the jinggu ms6.6 earthquake
MIAO Chong-gang, WEN Xiang, ZHOU Bin, ZHANG Hua, YUAN Yong-dong, HUANG Hui-ning
SEISMOLOGY AND GEOLOGY    2015, 37 (4): 991-1003.   DOI: 10.3969/j.issn.0253-4967.2015.04.005
Abstract690)      PDF(pc) (6103KB)(807)       Save

Continuous MODIS/Terra satellite thermal infrared remote sensing data of the Jinggu MS6.6 earthquake area from July 2014 to January 2015 is collected, and after cloud-removing, the thermal infrared data between 5:00a.m.-7:00a.m. Beijing Time, which is the best period for observation, is selected to perform land surface temperature data retrieval and analyze the temporal evolution of land surface temperature anomalies before and after the earthquake, as well as the relationship between abnormal spatial distribution and active fault. The impacts of non-structural factors such as topography, landform and seasonal weather of the earthquake zone on land surface temperature anomalies are discussed. The result shows that: a)there was thermal infrared anomalous temperature increase appearing near the epicenter two months before the MS6.6 Jinggu earthquake and there was a certain correspondence between the anomalous temperature increase and earthquake occurrence time. The significant temperature increase happened in the first half of the month, reached its peak 7 days before the earthquake, and dropped rapidly after the earthquake. At the same time, there was also anomalous temperature increase to a certain extent appearing about half month before the strong aftershocks of magnitude 5.8 and 5.9; b)Through the correlation analysis of non-structural factors such as topography, landform and seasonal weather of the earthquake zone, it is found that the structural "temperature increase" before the Jinggu MS6.6 earthquake was the information indicating the anti-season change of temperature increase in the earthquake zone; c)The anomalous temperature increase was cross-developed from the epicenter along the NS-NE trending conjugate faults, which is consistent roughly with the NNE-SSW predominant direction of the maximum principal stress of the regional tectonic stress field. After full consideration of the influence of non-structural factors such as topography, landform and seasonal weather on the abnormal temperature increase, it is inferred that this thermal infrared temperature increase is possibly a short-imminent anomaly before the earthquake.

Reference | Related Articles | Metrics