Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
VELOCITY STRUCTURE TOMOGRAPHY OF REGIONS DOWNSTREAM THE JINSHA RIVER BASED ON DENSE OBSERVATION
ZHANG Na, ZHAO Cui-ping, LI Chun-hong, ZHOU Lian-qing
SEISMOLOGY AND GEOLOGY    2019, 41 (6): 1380-1394.   DOI: 10.3969/j.issn.0253-4967.2019.06.005
Abstract588)   HTML    PDF(pc) (10478KB)(168)       Save
In this paper, the double difference seismic tomography method is applied to the phase arrival times of 7 465 seismic events to determine the hypocenter parameters of events as well as detailed 3D velocity structure at the northern segment of Xiaojiang Fault and its surrounding area. The data was recorded by 42 stations of the Jinshajiang River network from August 2013 to November 2016. At 2~6km, VP and VS present low velocity anomalies along the northern segment of Xiaojiang Fault, and the VS anomaly is especially remarkable. On both sides of the Xiaojiang Fault, there also exist obvious P and S wave low velocity areas. These low velocity areas correspond to the terrain, lithology distribution and the watershed of Jinsha River at shallower layer in the study area. Starting from 6km, a NE-directed high VP band along Zhaotong-Ludian and Huize-Yiliang Fault is formed on the eastern side of the northern segment of Xiaojiang Fault. VS also shows the high value in the area bounded by Lianfeng Fault, Baogunao-Xiaohe Fault and Huize-Yiliang Fault. Above 10km depth, to the west side of the Xiaojiang Fault including the Ninghui Fault, VP shows a significant low-velocity anomaly, while to the east side it presents high velocity feature. The Xiaojiang fault zone shows a significant low VP from north to south in the study region, and the low velocity anomaly in the northern segment is relatively significant, especially the low velocity anomaly area reaches 15km deep around Qiaojia area. Beneath the Baihetan Dam, a significant low VP area reaching to 5km deep is found. The earthquakes around the dam formed a strip from shallow to deep on the low-velocity area side. Whereas, a stable high-velocity area is found under the Wudongde Dam. The events relocation result shows that:all the focal depths in the study area are shallower than 20km, and the predominant focal depth is within 15km. Different from the NE-trending of the major faults in the study area, the relocated seismic events are obviously distributed nearly east-west along Matang Fault and Daduo Fault and the region around Huize. The focal depths of MS6.5 Ludian earthquake sequences are shallower than 15km, and mostly less than 10km. The aftershocks within 2a after the Ludian M6.5 earthquake form two predominant bands of about 40km and 20km along near EW and SN direction, respectively.
Reference | Related Articles | Metrics
THE INVERSION OF S-WAVE VELOCITY STRUCTURE IN NINGXIA AND ITS ADJACENT AREA USING BACKGROUND NOISE IMAGING TECHNOLOGY
XIE Hui, MA He-qing, JIAO Ming-ruo, MA Xiao-jun, ZHANG Nan, LI-Qing-mei
SEISMOLOGY AND GEOLOGY    2017, 39 (3): 605-622.   DOI: 10.3969/j.issn.0253-4967.2017.03.012
Abstract651)   HTML    PDF(pc) (9596KB)(268)       Save
In this paper, we use seismic waveform data of 90 seismic stations in Ningxia and its adjacent areas recorded between January 2012 and December 2013 to obtain the Rayleigh surface wave group velocity dispersion of the study area according to the noise imaging method and the 3-D S-wave velocity structure of the crust and upper mantle in Ningxia and its adjacent regions. The results show that within the depth range of 10~40km in Yinchuan graben and Liupanshan fault belt there exists a slow anomaly body, and with the increase of the depth this slow anomaly becomes an abnormal slow zone surrounding Lanzhou Basin between the massif arcuate structure of northeastern margin of Tibet Plateau and Alxa block. The 3-D S-wave velocity structure of the crust and upper mantle of the study area presents obvious lateral inhomogeneity. These results have important significance for the study of the dynamics of active tectonic zones and mechanism of strong earthquakes in Ningxia and its adjacent areas.
Reference | Related Articles | Metrics