%0 Journal Article %A LI Jun %A WANG Qin-cai %A CUI Zi-jian %A LIU Geng %A ZHOU Lin %A LU Zhen %A ZHOU Hui %T FOCAL FAULTS AND STRESS FIELD CHARACTERISTICS OF M7.0 JIUZHAIGOU EARTHQUAKE SEQUENCE IN 2017 %D 2019 %R 10.3969/j.issn.0253-4967.2019.01.004 %J SEISMOLOGY AND GEOLOGY %P 58-71 %V 41 %N 1 %X On August 8, 2017, Beijing time, an earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, Sichuan Province, with the epicenter located at 33.20°N 103.82°E. The earthquake caused 25 people dead, 525 people injured, 6 people missing and 170000 people affected. Many houses were damaged to various degrees. Up to October 15, 2017, a total of 7679 aftershocks were recorded, including 2099 earthquakes of M ≥ 1.0.
The M7.0 Jiuzhaigou earthquake occurred in the northeastern boundary belt of the Bayan Har block on the Qinghai-Tibet Plateau, where many active faults are developed, including the Tazhong Fault(the eastern segment of the East Kunlun Fault), the Minjiang fault zone, the Xueshan fault zone, the Huya fault zone, the Wenxian fault zone, the Guanggaishan-Daishan Fault, the Bailongjiang Fault, the Longriuba Fault and the Longmenshan Fault. As one of the important passages for the eastward extrusion movement of the Qinghai-Tibet Plateau(Tapponnier et al., 2001), the East Kunlun fault zone has a crucial influence on the tectonic activities of the northeastern boundary belt of Bayan Kala. Meanwhile, the Coulomb stress, fault strain and other research results show that the eastern boundary of the Bayan Har block still has a high risk of strong earthquakes in the future. So the study of the M7.0 Jiuzhaigou earthquake' seismogenic faults and stress fields is of great significance for scientific understanding of the seismogenic environment and geodynamics of the eastern boundary of Bayan Har block.
In this paper, the epicenter of the main shock and its aftershocks were relocated by the double-difference relocation method and the spatial distribution of the aftershock sequence was obtained. Then we determined the focal mechanism solutions of 24 aftershocks(M ≥ 3.0)by using the CAP algorithm with the waveform records of China Digital Seismic Network. After that, we applied the sliding fitting algorithm to invert the stress field of the earthquake area based on the previous results of the mechanism solutions. Combining with the previous research results of seismogeology in this area, we discussed the seismogenic fault structure and dynamic characteristics of the M7.0 Jiuzhaigou earthquake. Our research results indicated that:1)The epicenters of the M7.0 Jiuzhaigou earthquake sequence distribute along NW-SE in a stripe pattern with a long axis of about 35km and a short axis of about 8km, and with high inclination and dipping to the southwest, the focal depths are mainly concentrated in the range of 2~25km, gradually deepening from northwest to southeast along the fault, but the dip angle does not change remarkably on the whole fault. 2)The focal mechanism solution of the M7.0 Jiuzhaigou earthquake is:strike 151°, dip 69° and rake 12° for nodal plane Ⅰ, and 245°, 78° and -158° for nodal plane Ⅱ, the main shock type is pure strike-slip and the centroid depth of the earthquake is about 5km. Most of the focal mechanism of the aftershock sequence is strike-slip type, which is consistent with the main shock's focal mechanism solution; 3)In the earthquake source area, the principal compressive stress and the principal tensile stress are both near horizontal, and the principal compressive stress is near east-west direction, while the principal tensile stress is near north-south direction. The Jiuzhaigou earthquake is a strike-slip event that occurs under the horizontal compressive stress. %U https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2019.01.004