Using the gravity observation data of Mulanshan short gravity baseline field in 2018 and 2022, we established a high-precision short gravity baseline field of Mulanshan based on the relative gravity joint measurement method under the control of absolute gravity. We also analyzed and discussed the accurate calibration of the monomial coefficient of the relative gravimeter during the construction of the gravity short baseline field, the distribution of gravity values in the gravity baseline field of Mulanshan and the contribution of various environmental factors in the gravity variation results, these results show that:

(1)Maximum gravity segment difference of Mulanshan calibration baseline is 102.176mGal from G01 to G03 stations, and the average accuracy of gravity value of each measuring station reaches 4.8μGal. The geological structure of the Mulanshan baseline is stable, and the gravity change of measuring stations is not obvious. From 2018 to 2022, the gravity variation range of measuring stations was 5.9~12.8μGal, with an average of 9.5μGal, and the average uncertainty was ±5.7μGal. The gravity field mainly showed a positive change. The variation range of gravity in each measurement section is -4.8~6.9μGal, with an average of(1.8±8.6)μGal. The change of the surrounding environment has a certain impact on the gravity field, and the contribution of the new buildings near the G01 and G02 to the gravity change is 3.6μGal and -0.51μGal, respectively. These gravity changes of measuring stations in the IOS and Mulanshan baseline caused by vertical surface movement are(2.17±0.44)μGal and(1.67±0.45)μGal. The gravity effect caused by the change of surface water storage is(1.07±0.84)μGal, which cannot be ignored. Compared with observation results, the gravity change of each measuring station and section after correction is reduced, and the average gravity change values are reduced by 38.2% and 50.8%, respectively. The corrected gravity change results are more accurate. Due to the cumulative effect of errors in the correction process, the uncertainty of gravity change results after correction increases accordingly, and the uncertainty of gravity change results of measuring station and measuring section increases by 2.5% and 2.8%compared with observation results, respectively. Combined with the gravity change results of the measuring station and the measuring section, we can effectively extract abnormal information in gravity dynamic change results.

(2)There are differences in monomial coefficients of different gravity sections of the relative gravimeter. The results of CG-6 and CG-5 relative gravimeters are relatively consistent, and there is no systematic deviation between the two gravimeters. The difference in the monomial coefficient between the Wuhan-Yichang section(sub-section)and the Wuhan-Lücongpo section(total section)is 4.809‰, which has a great influence on the gravity observation results. The monomial coefficient needs to be accurately measured. The difference of the monomial coefficient in the sub-section is negatively correlated with the proportion of the gravity segment difference in the sub-section to the total section; the monomial coefficient of the total section is a weighted average result of each sub-section, and the proportion of gravity segment difference in sub-section to total section is the corresponding weight factor. Accurate calibration of the monomial coefficient of the relative gravimeter is a technical guarantee to obtaining high-precision gravity observation results. The gravity segment difference of sub-segments cannot cover the gravity range of the measurement area due to smaller segment difference, which will lead to the extrapolation of the monomial coefficient, so it cannot effectively calibrate the monomial coefficient of the relative gravimeter applicable to the whole measurement area. The total section can cover the gravity range of the measurement area, and the monomial coefficient is the ratio between the segment difference measured by the relative gravimeter and the known segment difference, and its calibration accuracy is inversely proportional to the gravity segment difference, so when using the total section as a reference for calibration of the monomial coefficient of the relative gravimeter, accuracy of the calibration can be guaranteed and precision of the calibration can be improved, so calibration result of the monomial coefficient using the total section is more accurate. The existing widely used relative gravimeters(such as LCR, CG-5, BURRIS, CG-6, and so on)have time-varying characteristics of the monomial coefficient, weakening the errors caused by changes of the monomial coefficient is essential to improve the accuracy of observations, and corresponding calibration is required before each period of gravity observation. The monomial coefficient of the relative gravimeters needs to be calibrated using a large segment difference, and the segment difference(or the accumulated segment difference)should be greater than 300mGal.

%U https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2023.02.015