Loading...

Table of Content

    20 December 2015, Volume 37 Issue 4
    Special topic on earthquake prediction method
    study on crustal velocity structure beneath kouquan fault and adjacent area
    WANG Xia, SONG Mei-qin, WANG Liang, LI Hong-wei, WU Hao-yu, LUO Yong
    2015, 37(4):  939-952.  DOI: 10.3969/j.issn.0253-4967.2015.04.001
    Asbtract ( )   PDF (7317KB) ( )  
    References | Related Articles | Metrics

    Through simultaneous inversion of earthquake hypocenters and velocity structure, we obtained the precise locations of earthquakes occurring from 1981 to 2013 in northern Shanxi and the 3D velocity structure, and analyzed emphatically the Kouquan Fault. The result of earthquake relocation shows that earthquakes are concentrated in the central-north segment of Kouquan Fault and the distribution is sparse towards both south and north end of the fault, which indicates that the strong activity is in the central-north segment of Kouquan Fault and the seismicity becomes weaker towards both ends. The result of velocity structure shows that the earthquake concentrated segment of Kouquan Fault is on the side of relative low-velocity area in the high-velocity body, and the south segment of Kouquan Fault is the continuous low velocity. We can recognize the velocity gradient zone from the obvious depression near the Kouquan Fault, which, as we preliminarily speculate, may be the evidence of the presence of Kouquan Fault(or basement detachment)at the deep part. The parallel velocity profile (velocity ratio profile) to Kouquan Fault shows that the earthquake cluster in the central-north segment of Kouquan Fault is located in the abrupt change zone from high to low velocity(from high to low velocity ratio).

    comparison of locations of rushan earthquake swarm from large and small network
    ZHENG Jian-chang, QU Li, QU Jun-hao, HU Xu-hui, LI Dong-mei
    2015, 37(4):  953-965.  DOI: 10.3969/j.issn.0253-4967.2015.04.002
    Asbtract ( )   PDF (5793KB) ( )  
    References | Related Articles | Metrics

    A notable swarm occurred in Rushan, Shandong Peninsula and its activities continue since Oct. 2013 till now. Up to Sept. 30, 2014, more than 7 000 events have been recorded, in which locatable shocks exceed 2000, and 18 events with ML≥3.0. The swarm is rarely seen in East China for its extraordinary duration time and surprising high frequency of aftershocks. 18 temporary seismometers have been deployed around the swarm since May 6, 2014, and composed a seismic array for monitoring the swarm activities. Based on data from permanent networks and temporary array, we relocated the earthquake sequence by using hypoDD method. It has been shown that, there is obvious difference between permanent network results and temporary array results. The permanent network of Shandong has a relative large coverage gap(more than 200°)for this swarm. Its location results therefore should not be reliable. There are maybe other errors in the permanent network result due to some problems in the raw data, such as too few stations for most locatable events(3 stations), and relative lower proportion of located events in final result(74.3%, while 95.1% in temporary array result). It can be found by comparing location results from permanent network and temporary array that, using temporary array's data can improve the location accuracy significantly. The results of temporary array are: aftershocks distribution of Rushan swarm is in NWW direction, the dip-direction of fitted fault plane is SW, and the strike and dip angle agree with focal mechanism of the mainshock. Focal depths of aftershocks are at 4.5~8km; the swarm is restricted in a small area about 3km×3km×1km, and has some characteristics such as clustering, staged activities, and etc; the aftershock activities are in accord with crack growth behavior pattern, hence we deduced that there may be fluid intrusion in source area. Finally, we discussed the seismogenic structures and active mechanisms of this swarm combined with relative geologic knowledge. We draw some conclusions as follows: 1)Rushan swarm probably occurred at the boundary of rock bodies of Duogu Mountain and Haiyangsuo super-unit; 2)The seismogenic structure is a blind fault, which should be a part of adjacent Heishankuang-Jilincun Fault, or might be a new fault at rock body boundaries; 3)Rushan swarm might be an evidence for the existence of the disputed Shidao Fault.

    research of source parameters and stress state in shandong segment of tanlu fault zone
    WANG Peng, ZHENG Jian-chang, LIU Xi-qiang, XU Chang-peng, LI Xia
    2015, 37(4):  966-981.  DOI: 10.3969/j.issn.0253-4967.2015.04.003
    Asbtract ( )   PDF (4621KB) ( )  
    References | Related Articles | Metrics

    In recent years, there have been few researches and analysis published on the seismic activity and stress state in Shandong segment of Tanlu fault zone using digital seismological methods such as seismic apparent stress, focal mechanism solution and so on. In this paper, source parameters such as focal mechanism solutions and apparent stress are calculated using the waveform data of ML≥1 moderate-small earthquakes in Shandong segment of Tanlu fault zone recorded by Shandong digital seismic network since 2007. According to focal mechanism solutions, a statistical analysis is done on the focal dislocation types in the study area using triangle graphical method, and the results show that the faulting in this area is mainly of strike-slip mechanism, and there are less thrust and normal mechanism. Calculation with the mean stress tensor method illustrates that the direction of mean principle stress of Shandong segment of Tanlu fault zone is NEE-SWW, which is the result of the combined effect of the subduction of West Pacific plate and the extrusion of Indian plate to Eurasian plate; the small dip angle indicates that the mode of action of stress is nearly horizontal, and the direction of principal stress axis is nearly perpendicular to the Tanlu fault zone. Under the action of such compressive stress field, dislocation is not likely to occur and the stress accumulation is enhanced on both sides of the fault. The apparent stress is calculated using the source spectral parameters method. Apparent stress has positive correlation with the magnitude and increases with the increased magnitude. So we get apparent stress difference by subtracting the empirical fitting value from the apparent stress. By removing the impact of magnitude, and according to the temporal-spatial evolution image of apparent stress difference, we found that the apparent stress in Shandong segment of Tanlu fault zone generally has a trend of decrease starting from the Wenchuan earthquake in 2008, and the spatial distribution of apparent stress in the region is very uneven. Combined with the spatial distribution of b values, the result shows that high stress is mainly located in Anqiu segment and Tancheng-Juxian segment, especially in Anqiu segment where small magnitude earthquakes appeared accompanying with the high stress. Low b-value means high stress and low frequency means low stress release, which indicates that Anqiu segment might accumulate higher stress and is at the fault locking stage. The research will provide new data for better understanding the present active feature and stress state of the Shandong segment of the Tanlu fault zone.

    the changing relationship of hydrogeological parameters of dadianzi well-aquifer system
    DING Feng-he, DAI Yong, SONG Hui-ying, WEI Jian-min, CHA Si
    2015, 37(4):  982-990.  DOI: 10.3969/j.issn.0253-4967.2015.04.004
    Asbtract ( )   PDF (2194KB) ( )  
    References | Related Articles | Metrics

    Hydrogeological parameter is an important index to characterize the hydrogeological properties of the aquifer, and has a clear physical basis and mechanism. Although the predecessors have made significant achievements in these areas, research is lacking on the changing law and relationship of the hydrogeological parameters of well-aquifer system. The digital water level and barometric pressure data of Dadianzi Well are used as the basis in this study. Based on the theories of elastic mechanics, rock mechanics and fluid mechanics, and using barometric pressure coefficient and tidal factor, the hydrogeological parameters in Dadianzi well-aquifer system in undrained conditions are studied. The corresponding water storage rate can also be obtained quantitatively. In addition, with the thickness of the aquifer, the pressure transmitting coefficient, the radius of the well and the frequency of the tidal wave, the permeability coefficient and transmissibility coefficient of well-aquifer system can be obtained, and the relationships between them are derived. The results show that: 1)There is an obvious power function relationship between porosity and solid skeleton volume compression coefficient, volume compression coefficient of water in aquifer, water storage rate, permeability coefficient and transmissibility coefficient. The volume compression coefficient of solid skeleton, water storage rate, permeability coefficient and transmissibility coefficient have a positive correlation with the porosity, the volume compression coefficient of water in aquifer decreases with increasing porosity. The volume compression coefficient of solid skeleton and water in aquifer can be well fitted to one of two quadratic polynomials. And the volume compression coefficient of water in aquifer is larger than the solid skeleton volume compression coefficient, water is more easily compressed. In addition, with the increase of water storage rate, the permeability coefficient and transmissibility coefficient also increase linearly; 2)Different from the traditional pumping test and indoor experiment, this paper uses the digital water level and other data, combined with the pressure coefficient and Venedikov tidal harmonic analysis results to access to the porosity, the volume compression coefficient of solid skeleton and water in aquifer medium, water storage rate, the permeability coefficient and the transmissibility coefficient. This method is simple and accurate.

    analysis on modis satellite thermal infrared information before and after the jinggu ms6.6 earthquake
    MIAO Chong-gang, WEN Xiang, ZHOU Bin, ZHANG Hua, YUAN Yong-dong, HUANG Hui-ning
    2015, 37(4):  991-1003.  DOI: 10.3969/j.issn.0253-4967.2015.04.005
    Asbtract ( )   PDF (6103KB) ( )  
    References | Related Articles | Metrics

    Continuous MODIS/Terra satellite thermal infrared remote sensing data of the Jinggu MS6.6 earthquake area from July 2014 to January 2015 is collected, and after cloud-removing, the thermal infrared data between 5:00a.m.-7:00a.m. Beijing Time, which is the best period for observation, is selected to perform land surface temperature data retrieval and analyze the temporal evolution of land surface temperature anomalies before and after the earthquake, as well as the relationship between abnormal spatial distribution and active fault. The impacts of non-structural factors such as topography, landform and seasonal weather of the earthquake zone on land surface temperature anomalies are discussed. The result shows that: a)there was thermal infrared anomalous temperature increase appearing near the epicenter two months before the MS6.6 Jinggu earthquake and there was a certain correspondence between the anomalous temperature increase and earthquake occurrence time. The significant temperature increase happened in the first half of the month, reached its peak 7 days before the earthquake, and dropped rapidly after the earthquake. At the same time, there was also anomalous temperature increase to a certain extent appearing about half month before the strong aftershocks of magnitude 5.8 and 5.9; b)Through the correlation analysis of non-structural factors such as topography, landform and seasonal weather of the earthquake zone, it is found that the structural "temperature increase" before the Jinggu MS6.6 earthquake was the information indicating the anti-season change of temperature increase in the earthquake zone; c)The anomalous temperature increase was cross-developed from the epicenter along the NS-NE trending conjugate faults, which is consistent roughly with the NNE-SSW predominant direction of the maximum principal stress of the regional tectonic stress field. After full consideration of the influence of non-structural factors such as topography, landform and seasonal weather on the abnormal temperature increase, it is inferred that this thermal infrared temperature increase is possibly a short-imminent anomaly before the earthquake.

    comprehensive study on the changing process of focal mechanisms of the 2014 huoshan ms4.3 earthquake sequence
    NI Hong-yu, LIU Ze-min, HONG De-quan, WANG Xiao-li, ZHAO Peng
    2015, 37(4):  1004-1019.  DOI: 10.3969/j.issn.0253-4967.2015.04.006
    Asbtract ( )   PDF (4363KB) ( )  
    References | Related Articles | Metrics

    In this paper, the focal mechanisms of Huoshan MS4.3 earthquake sequence since October 2013 are calculated with the method developed recently by Snoke, which combines the use of first motion of P, SV and SH waves and their amplitude ratios(referred to as Snoke method). We estimate the difference(also referred to consistency parameter θ)between the stress axis direction of focal mechanism solution and the mean stress tensor on one hand, and get the relative changes of focal mechanisms rather than the focal mechanisms themselves on the other hand, by using methods of correlation coefficient of body-wave spectral amplitudes, first motions and amplitude ratios of vertical P wave of single station, as limited by the network layout and density of observation points, focal mechanism solutions of small earthquakes are not easy to obtain. We studied the changing process of focal mechanisms of Huoshan MS4.3 earthquake sequence since October 2013 with many methods such as consistency parameter, correlation coefficient of body-wave spectral amplitudes, first motion and amplitude ratio of vertical P wave of single station, to determine the type of the sequence. The result shows that: before Huoshan MS4.3 earthquake of April 20, 2014, the consistency parameter of the earthquake sequence was lower than the mean for a long period, correlation coefficient of body-wave spectral amplitudes was always at high values(about 0.9), odds ratio of first motions of vertical P wave of single station near the epicenter, defined as the ratio of predominant number to contrast number of first motions, was up to 13.8 at station SJH, 3.8 at BZY and 3.6 at LNA, respectively; first motions of vertical P wave of single station showed an obvious predominant distribution as a whole, and the amplitude ratios of vertical P were consistent, which suggests that before Huoshan MS4.3 earthquake, focal mechanisms were consistent, so the earthquake sequence before Huoshan MS4.3 earthquake is the foreshock sequence. After Huoshan MS4.3 earthquake, correlation coefficient of body-wave spectral amplitudes was lower(about 0.6), first motions and amplitude ratios of vertical P wave of single station were in disorder, which suggest that the focal mechanisms are inconsistent after the Huoshan MS4.3 earthquake, so the earthquake sequence after Huoshan MS4.3 earthquake is the aftershock sequence, and subsequent larger earthquakes are not likely to occur. The focal mechanisms in Huoshan region during the period of Huoshan MS4.3 earthquake experienced a process from scattering to convergency and to scattering again.

    preliminary discussion on horizontal gravity gradient and its application to seismic gravity precursor research
    ZHAO Yun-feng, ZHU Yi-qing, LIU Fang
    2015, 37(4):  1020-1029.  DOI: 10.3969/j.issn.0253-4967.2015.04.007
    Asbtract ( )   PDF (5002KB) ( )  
    References | Related Articles | Metrics

    In this paper, according to the synthetic gravity anomaly of a horizontally infinite cylindrical geologic body, gravity gradient in horizontal direction was calculated by potential field discrete cosine transformation in frequency domain. In the calculation, the minimum curvature method was used to extend edge lines. We found that the gravity gradient field from the potential field transformation was dependable by comparison with synthetic gravity gradient, except the data in the edges. Then, the accumulative horizontal gravity gradients before Lushan MS7.0 earthquake were calculated for the accumulative gravity anomaly from September 2010 to October 2012. In the north-south direction, gravity gradient in Daofu-Kangding-Shimian and Markang-Lixian-Lushan exhibited a positive high value, and the strike of the high value zone was in line with the strike of Xianshuihe Faults and Markang Faults. In the east-west direction, high value zone was not as obvious as that in the north-south direction. Gravity gradients in the direction along and vertical to the strike of Longmenshan Faults were calculated by the definition of directional derivative. In the along-strike direction, high gravity gradient values appeared in Markang-Lixian areas along Markang Faults and Daofu-Kangding-Shimian areas along Xianshuihe Faults, and extremum appeared in Kangding-Shimian and the area nearby Lixian. In the direction vertical to the strike of Longmenshan fault zone, high gravity gradient values appeared in Lixian-Lushan-Kangding-Shimian areas, and the extremum appeared in the area nearby Kangding. The results indicate that gravity gradient in the direction along and vertical to the strike of faults can better show the relative gravity change on the two sides of faults. Lushan MS7.0 earthquake is located at the transition zone between the two high value zones of gravity gradient. The total horizontal gravity gradient shows that the location and strike of the high value zone are basically consistent with regional faults, and the extremums of total horizontal gravity gradient appeared nearby Lixian, Kangding and Shimian.

    analyzing the variation characteristics of stress field in hetao seismic belt using focal mechanism data
    HAN Xiao-ming, LIU Fang, ZHANG Wen-tao, LI Juan, HOU Di
    2015, 37(4):  1030-1042.  DOI: 10.3969/j.issn.0253-4967.2015.04.008
    Asbtract ( )   PDF (5170KB) ( )  
    References | Related Articles | Metrics

    Based on analysis of background of geological tectonic movement and strong earthquake activity, we first obtained the focal mechanism solutions using amplitude ratio and CAP method, then determined the characteristic of average stress field of the study area by inversion of the stress field. On this basis, we selected the source mechanism consistency parameter as the inspection index to obtain the latest changes of stress field in Hetao seismic zone based on its temporal and spatial analysis. Two methods were used in the stress field inversion for comparison and analysis, which are average stress axis tensor and LSIB(Linear stress inversion bootstrap, LSIB). According to the geological tectonic movement and focal mechanism solutions of MS≥4.0 earthquakes from 1970, we judge that the stress field evolution process of Hetao seismic belt is controlled jointly by vertical difference movement and horizontal shear movement, resulting in that the normal fault and strike-slip fault mechanisms are dominating.Taking into account the station layout of the study area, and in order to ensure the accuracy of calculation, we calculated 224 earthquakes focal mechanism solutions by using amplitude ratio and CAP method, including 164 earthquakes with 2.8≤ML<3.5, 42 earthquakes with 3.5≤ML<4.0, and 18 earthquakes with ML≥4.0; The statistical results on type of focal mechanisms show that, there are 142 strike-slip earthquakes(63.4%), 50 normal fault earthquakes(22.3%)and 32 thrust fault earthquakes(14.3%). In this study period(from 2001 to 2012), most earthquakes had a strike-slip mechanism in Hetao seismic belt, this is one of the inherent characteristics of the stress field.The result of average stress axis tensor and LSIB shows that, the azimuth of maximum compressional stress is 47°~52°, direction is NE-SW; The azimuth of minimum compressional stress is 313°~322°, direction is NW-SE; This indicates that, the stress field characteristics of Hetao seismic belt and its sub-block are not completely consistent. Linhe Basin exhibits coordinated stress field characteristics with Hetao seismic belt, but Hubao Basin exhibits regional differences, direction of compressive stress has clockwise deflection in Baotou area, and the compressive stress direction is NEE. This heteropical character of stress field is also confirmed by horizontal projection distribution of stress axis of historical strong earthquakes and recent moderate and small earthquakes. Since 2003, the temporal sequence curve of consistency parameter of Hetao seismic belt had a downward trend, this change was caused by focal mechanism consistency parameter of Linhe to Wuhai area, which indicates that this structural position is possible to be a priority area for stress accumulation and accelerated release in future.

    characteristics of recent crustal movement in the north section of north-south seismic belt
    WANG Jing, CHAI Chi-zhang, MA He-qing, ZENG Xian-wei, LI Guo-bin
    2015, 37(4):  1043-1054.  DOI: 10.3969/j.issn.0253-4967.2015.04.009
    Asbtract ( )   PDF (7205KB) ( )  
    References | Related Articles | Metrics

    Tectonic activity is intense and destructive earthquakes occur frequently in the northern section of the North-South Seismic Belt(NSSB). After the May 12, 2008 Wenchuan earthquake, the North-South Seismic Belt enters a new period of high seismicity. On July 22, 2013, the Minxian-Zhangxian earthquake occurred, which broke the 10-years seismic quiescence of magnitude 6 of the area, indicating an increasing trend of strong earthquakes in the region. Earthquake is the product of crustal movement. Understanding the dynamics of the process of crustal movement may provide basis for earthquake prediction. GPS measurement can provide high-precision, large-scale, quasi-real-time quantitative crustal movement data, that allows us to explore the evolution of crustal movement and its relationship with earthquake, thus providing the basis for determining the seismic situation. Since 2009, the density of mobile GPS measurement stations has significantly improved in the Chinese mainland, and moreover, the Wenchuan earthquake has brought about adjustment of the regional crustal deformation regime. So the introduction of the latest repeat GPS data is important for understanding the features of crustal movement in the northern section of the North-South Seismic Belt. In this paper, we obtained the GPS velocity field, fault profile and baseline time series and analyzed the dynamics of recent crustal movement in the northern section of the North-South Seismic Belt using the 1999a-2014a GPS data of mobile and continuous GPS measurement stations. The results show that: the Qilianshan Fault has a high strain accumulation background. There are locked portions on the Liupanshan Fault, especially in the region of Jingning, Pingling, Dingxi, Longxi. In 2004-2009a, the degree of locking of the Liupanshan Fault got higher. In 2009—2013a, crustal movement on the northern section of the North-South Seismic Belt weakened compared with 1999-2004, 2004-2009, and showed some features as follows: ① The velocity field weakened more markedly near the Qilian-Haiyuan-Liupanshan faults; ②The velocity decreased more significantly in the region north of Qilianshan-Haiyuan Fault than that of the south, resulting in enhanced thrust deformation on the Qilianshan Fault in 2009-2013a and the decreased sinistral shear deformation on the Qilianshan Fault and Haiyuan Fault; ③the velocity field decreased more remarkably at 50km west of Liupanshan Fault, compared to the east region, which led to the locked range on the Liupanshan Fault extending to the range of 100km near the fault zone during 2009-2013 from the previous locked range of 50km near the fault. The GPS baseline time series analysis also reveals a number of structural features in the region: Yinchuan Graben is continuing extending, and the extension in the west is stronger than that in the east. On the southern end of Yinchuan Graben, the deformation is very small.

    Research Paper
    the faulting characteristics of 2008 wenchuan ms8.0 earthquake and its relation with strong ground motion
    HUANG Bei, ZHANG Pei-zhen, ZHANG Dong-li, LI Xiao-jun
    2015, 37(4):  1055-1069.  DOI: 10.3969/j.issn.0253-4967.2015.04.010
    Asbtract ( )   PDF (5002KB) ( )  
    References | Related Articles | Metrics

    The 2008 MS8 Wenchuan earthquake occurs on a high angle listric thrust fault. It is the first time that the near and far field strong ground motion was observed for such special type thrust earthquake. This paper jointly interprets the distribution of peak acceleration of ground motion data with seismogenic structure and slip propagating process to investigate how high angle listric thrust fault controls the pattern of strong ground motion. We found that the distribution of peak acceleration of strong ground motion during the Wenchuan earthquake has four distinctive features: 1)The peak acceleration of ground motion inside the Longmenshan fault zone is large, that is, nearly twice as strong as that outside the fault zone; 2)This earthquake produces significant vertical ground motion, prevailing against horizontal components in the near field; 3)The far field records show that the peak acceleration is generally higher and attenuates slower versus station-fault distance in the hanging wall. It is doubtful that the attenuation of horizontal components also has the hanging wall effect since no evidence yet proving that the unexpected high value at long distance need be omitted; 4)As to the attenuation in directions parallel to the source fault(Yingxiu-Beichuan Fault), the far field records also exhibit azimuthal heterogeneity that the peak acceleration of horizontal components decreases slower in the north-northeastern direction in which the co-seismic slip propagates than that in the backward way. However, the attenuation of vertical component displays very weak heterogeneity of this kind. Synthetically considered with shallow dislocation, high dip angle, and prevailing vertical deformation during co-seismic process of the Wenchuan earthquake, our near and far field ground motion records reflect the truth that the magnitude of ground motion is principally determined by slip type of earthquake and actual distance between the slipping source patches and stations. As a further interpretation, the uniqueness of high angle listric thrust results in that the ground motion effects of the Wenchuan earthquake are similar to that due to a common thrust earthquake in some components while differ in the others.

    petrological and geochemical characteristics of quarternary volcanic rocks in haixing area, eastern north china
    YU Hong-mei, ZHAO Bo, WEI Fei-xiang, XU Jian-dong, WANG Qing-min
    2015, 37(4):  1070-1083.  DOI: 10.3969/j.issn.0253-4967.2015.04.011
    Asbtract ( )   PDF (8372KB) ( )  
    References | Related Articles | Metrics

    Field investigation and lab analysis on samples were carried out for Quaternary volcanoes, including Xiaoshan volcano, Dashan volcano and Bianzhuang hidden volcano, in Haixing area, east of North China. Results show that Xiaoshan volcano with the eruptive material of volcanic scoria, crystal fragments and volcanic ash is a maar volcano, the eruptive pattern is pheatomagmatic eruption, and the influence scope is near the crater. Dashan volcano exploded in the early stage, and then the magma intruded, forming the volcanic neck. The eruption strength and scale are limited, and the eruptive materials are scoria, volcanic agglomerate and dense lava neck. The volcanic rocks in Bianzhuang are porosity and dense volcanic rocks and volcanic breccia, reflecting the pattern of weak explosive eruption and lava flow, and the K-Ar age dating on volcanic rocks indicates that the eruption happened in early Pleistocene. Xiaoshan volcanic scoria and Bianzhuang hidden volcanic rocks are mainly basaltic, Dashan volcanic rocks with lower SiO2 content are nephelinite in composition. Their oxide contents have no linear relationship, indicating that there is no magma evolution relationship between these magmas from the three places. Three volcanic rocks all have enrichment of light rare earth. The Bianzhuang volcanic rocks are rich in large ion lithophile elements, and have no high field strength elements Zr and Hf, Ti losses. The volcanic materials from Xiaoshan and Dashan are intensively rich in Th, U, Nb and Ta, and significantly poor in K and Ti. Although the magmas from these three places in Haixing area may all come from asthenosphere, the volcanic materials have different petrological and geochemical features, and relatively independent volcanic structures, therefore, they experienced different magma processes.

    co-seismic coulomb stress changes and its influences on aftershock distribution and surrounding faults caused by 2014 ludian earthquake, yunnan
    FU Rui, SHAN Bin, XIONG Xiong, ZHENG Yong, XIE Zu-jun, LIU Cheng-li, FANG Li-hua
    2015, 37(4):  1084-1095.  DOI: 10.3969/j.issn.0253-4967.2015.04.012
    Asbtract ( )   PDF (3376KB) ( )  
    References | Related Articles | Metrics

    The studies of earthquake stress transfer and its influence on regional seismicity have found that earthquake occurrences are highly interactive and correlated rather than isolated and random in traditional point in recently years. A lot of phenomena in earthquake observations such as aftershock distribution, stress shadow, earthquake interaction and migration were well explained based on the theory of earthquake stress interaction. It is important that understanding the process of earthquake interaction could give an insight into the physical mechanism of earthquake cycle, and could help us assess the seismic hazard in future.It has long been recognized that regional stress accumulated by tectonic motion is released when earthquake occurs. When earthquakes occur, the accumulated stress does not vanish completely, but is redistributed through the process of stress transfer, and then the redistributed stress may trigger potential earthquakes. The increment of Coulomb failure stress loading in the certain regions may improve the seismic activities. By contrast, the decrement of Coulomb failure stress in the areas of stress shadow where the stress on faults may unload could lead to the decrement of seismic activities.On August 3, 2014, an MS6.5 earthquake occurred in Zhaotong-Ludian region, Yunnan Province, China, killing and injuring hundreds of people. Therefore, it is critical to outline the areas with potential aftershocks before reconstruction and re-settlement so as to avoid future disasters. Based on the elastic dislocation theory and multi-layered lithospheric model, we calculate the co-stress changes caused by the Zhaotong-Ludian earthquakes to discuss its influences on aftershock distribution and surrounding faults. It is shown that the Coulomb stress changes based on the rupture in the NNW direction can explain better the aftershock distribution. It indicates that the NNW direction may represent the real rupture. The aftershocks mainly distribute in the regions with increased stress along main rupture and west to the rupture. In other regions with increased stress, the distributions of aftershock are rare which may indicate the low tectonic stress accumulation in these regions. The stress accumulation and corresponding seismic hazard on the southern part of Zhaotong Fault, Qiaojia segment of Zemuhe-Xiaojiang Fault and northeastern part of Lianfeng Fault are further increased by the Zhaotong-Ludian earthquake. We should pay special attention to the southern part of Zhaotong Fault where seismic activity is very high in recently years and the increment of Coulomb failure stress in this area is more than 0.1bar(0.1bar is the threshold of earthquake triggering). In order to make a more objective and comprehensive discussion, we calculate the sensitivity of the parameters such as effective coefficient of friction, the calculated depth and multilayered crustal model.

    significance of high-resolution loess stratification based on grain size and magnetic susceptibility analysis to paleo-earthquake study: a case study of dongyugou loess section, at hongtong, shanxi province
    WEI Lei-hua, HE Hong-lin, JIANG Han-chao, XU Yue-ren, WEI Zhan-yu, GAO Wei, ZOU Jun-jie
    2015, 37(4):  1096-1114.  DOI: 10.3969/j.issn.0253-4967.2015.04.013
    Asbtract ( )   PDF (9042KB) ( )  
    References | Related Articles | Metrics

    As an important technology to paleoseismologic research, trenching has been used to identify paleo-earthquakes recorded in strata, combined with dating technology. However, there have been some bigger uncertainties and limitations. For instance, subtle strata in loess sediment cannot be interpreted only by naked-eye, which seriously affects identifying paleo-earthquake horizon and time. Therefore, how to improve the accuracy and reduce the uncertainty of paleo-earthquake identification is the important problem we are currently facing. Dongyugou loess section, located in the northeastern corner of Linfen Basin, Shanxi Province, cuts across the Huoshan piedmont fault. The section exposes not only the well-developed loess sequence, but also several obvious faulting events. Thus, this loess section is a better site to make a high resolution study to improve the accuracy and reduce the uncertainty of paleo-earthquake identification. Based on the high-resolution grain size and magnetic susceptibility analysis, and associated with visual interpretation by naked-eye, we made a high-resolution stratification of Dongyugou loess section, including high-resolution thickness of each stratum and its upper and bottom boundaries. Based on the high-resolution stratification and their comparison between two fault walls, we identified three earthquake events, which occurred after formation of u5-7, u4 and u2, corresponding to their stratification depth of 7.1m, 4.7m and 2.9m in hanging wall. Based on results of OSL dating and average sedimentation rate of hanging wall, we estimated that the three events occurred around 45.8ka(between (48.1±1.5)~(43.2±2.5)ka), 32.8ka(between (35.0±2.4)~(30.6±1.3)ka) and 23.3ka(between (26.4±0.8)~(20.9±0.7)ka). According to the thickness difference of three loess-paleosol sedimentary cycles between two fault walls, we calculated the coseismic vertical displacements of the three events as 0.5m, 0.4 and 1.3m, respectively. Compared with other segments of the Huoshan piedmont fault zone, we found the southernmost segment is the weakest, with longer recurrence interval of about 11ka and lower vertical slip rate of 0.048mm/a. The high-accuracy grain size and magnetic susceptibility analysis offers an effective method for reducing the uncertainties of the paleo-earthquake research in loess area.

    design and construction of national active fault data integration and sharing platform
    SUI Yuan, DU Ke-ping, YU Gui-hua, XU Xi-wei, WU Xi-yan, GAN De-qiang
    2015, 37(4):  1115-1124.  DOI: 10.3969/j.issn.0253-4967.2015.04.014
    Asbtract ( )   PDF (4676KB) ( )  
    References | Related Articles | Metrics

    Over the past nearly 20 years, there is a huge development in active fault database related technologies in China, mass of active fault data has provided us important basis for researching on earthquake and disaster reduction, etc. However, with the appearance of huge amount of active fault data, lots of problems have emerged, such as data redundancy, inefficient management and information islands, etc. One of the major reasons is lack of efficient method to share the active fault data we owned.By study and comparison, we find that WebGIS is a good solution to solve the problem of active fault data publishing and sharing. WebGIS has well combined the advantages of traditional GIS and internet technologies, it could also share geographic data quickly, provide abundant browsing, searching and analysis functions. Based on the project of "China Earthquake Active Fault Detection—The North China Tectonic Region", and taking the foundational database information sharing platform of the active fault detection and survey as an example, the paper introduces the key technologies of active fault data sharing platform with latest WebGIS technology. The sharing system, which employs ArcGIS Server 10.0 as the GIS server, and utilizes MS-Silverlight technology at the client side, makes use of three-layer architecture which is popular in current B/S mode. To guarantee the security of the database on the internet, data source in the backend of the system is a simplified version of the active fault database of the North China tectonic region. Finally, the system has realized the publishing and sharing of 1 ︰ 50000 active fault mapping and main geophysical survey lines in North China tectonic region, and moreover, it provides some conventional map operations as well as fault searching and locating functions.The wide use of active fault data decides the significance of sharing system. It is very convenient to use this lightweight data sharing system to provide important basis for relevant industries, such as urban planning, land use and engineering site option, etc.

    three-dimensional sensitivity coefficients of apparent resistivity and preliminary application
    XIE Tao, LU Jun
    2015, 37(4):  1125-1135.  DOI: 10.3969/j.issn.0253-4967.2015.04.015
    Asbtract ( )   PDF (2079KB) ( )  
    References | Related Articles | Metrics

    We calculate three-dimensional sensitivity coefficients distribution of apparent resistivity observation when Schlumberger array is used by using finite element method. Analysis results suggest that for the situation of one-dimensional positive or minus coefficient of surface medium, three-dimensional sensitivity coefficients distribution at surface shows similar patterns, and sensitivity coefficients distributions of different layered electric structures are also similar. There are two approximate ellipses at the two-dimensional surface plane between current electrodes and potential electrodes, where sensitivity coefficients are minus, and sensitivity coefficients at other areas are positive. Sensitivity coefficients at two approximate ellipses between current electrodes and potential electrodes are minus at the vertical section along monitoring line, while others are positive. From the three-dimensional view, minus sensitivity coefficients are at the two approximate half ellipsoids between current electrodes and potential electrodes when arrays are applied at surface. And coefficients near the electrodes are much greater than other areas. When resistivity of local areas at surface changes, we can qualitatively analyze the disturbing effects caused by the areas using three dimensional sensitivity coefficients distribution, and the analysis result can serve as reference for further experiment and numerical model quantitative analysis.

    ages of the recent two episodes of glacially dammed lakes along the upstream of the yarlung zangbo gorge
    LI Cui-ping, WANG Ping, QIAN Da, TANG Mao-yun
    2015, 37(4):  1136-1146.  DOI: 10.3969/j.issn.0253-4967.2015.04.016
    Asbtract ( )   PDF (5227KB) ( )  
    References | Related Articles | Metrics

    There are many episodes of multiple-level lacustrine terraces along the entrance of the Yarlung Zangbo Great Canyon. Besides, very thick fluvio-lacustrine sediments are buried beneath the cover of the riverbed. Optically stimulated luminescence and radiocarbon dating provide an approximate timeline of upper valley deposits and reveal at least two glacially dammed lake events (Ⅰ and Ⅱ) which have deposition ages of 7~9ka (Ⅰ) and 20~30ka(Ⅱ), respectively. The recent two episodes of glacially dammed lakes produced two steps of lacustrine terraces (T1, T2) correspondingly, which are of elevations 2906~2 956m and 3100~3 060m. The formation of paleo-dammed lakes reflects that the Zelunglung Glacier in the west slope of Mt. Namche Barwa had progressively advanced to block the Yarlung Tsangpo River during the early Holocene and the Last Glacial Maximum. The glacially dammed lake I has a relatively smaller extent. Its lacustrine sediments are distributed mainly from Datuoka to Mirui with maximum thickness about 5~8m. Its end is roughly at the south of Milin County. The glacially dammed lake Ⅱ occupies a large area with the end roughly nearby Lang County. Its sediments are exposed from Datuoka to Wolong with maximum thickness about 100m. After the later fluvial erosion, the lacustrine sediments of this lake formed 1~3 levels of secondary terraces.

    analyses on the triggering facrors of large quantities of landslides in the upper reaches of the minjiang river, sichuan province
    LI Yan-hao, JIANG Han-chao, XU Hong-yan, LIANG Lian-ji
    2015, 37(4):  1147-1161.  DOI: 10.3969/j.issn.0253-4967.2015.04.017
    Asbtract ( )   PDF (3746KB) ( )  
    References | Related Articles | Metrics

    Over the past geological and historical period, tens of thousands of landslides occurred in the upper reaches of the Minjiang River, an area which is characterized by alpine valleys and has been densely populated over the past several hundreds of years. Discussing the triggering factor of these landslides is of great significance to geological hazard mitigation and prevention in this region. In this paper, we focus on four aspects of regional rainfall, shape features of landslide slopes, the corresponding relationship between landslide area and earthquake magnitude, and the recurring features of the reconstructed palaeoearthquake record at Diexi. Compared with those in Nepal, both mean seasonal rainfall accumulation and mean daily rainfall for the past 30 years are too low to reach the threshold values triggering landslides in the upper reaches of the Minjiang River. Secondly, landslides in the study area are usually absent of inner gorges(canyon topography)on the hillslope toes, which are confirmed in previous studies as typical features of landslides triggered by storms. Thirdly, wide distribution of the landslides in the study area supports our notion of earthquake-triggering because the landslides triggered by storms commonly distribute locally. Fourthly, periodicity analysis of the reconstructed palaeoearthquake record at Diexi provides a few cycles of twenty to thirty years, possibly corresponding to the earthquakes of magnitudes>5.0 or 5.5 which are believed to have caused soft-sediment deformation in the study area. In contrast, like the 2008 MS8.0 Wenchuan earthquake, the average recurrence interval of the large earthquakes in the study area is 2.6ka. They caused tens of thousands of landslides and provided more coarse silt particles for the nearby lake sediments at least in 330 years for each time. This is consistent with exponential increase of earthquake magnitude from large to medium and of the landslide area with the increased earthquake magnitude. To sum up, we suggest that tens of thousands of landslides in the upper reaches of the Minjiang River were most likely triggered by earthquakes instead of storms. This preliminary viewpoint needs further examination in the future.

    research on characteristics of late quaternary activity of the jiangsu segment of anqiu-juxian fault in the tanlu fault zone
    ZHANG Peng, LI Li-mei, RAN Yong-kang, CAO Jun, XU Han-gang, JIANG Xin
    2015, 37(4):  1162-1176.  DOI: 10.3969/j.issn.0253-4967.2015.04.018
    Asbtract ( )   PDF (11088KB) ( )  
    References | Related Articles | Metrics

    Anqiu-Juxian Fault is an important fault in the Tanlu fault zone, with the highest seismic risk, the most recent activity date, and the most obvious surface traces. Due to lack of credible geological evidences, there is big controversy on the Holocene activity in the Jiangsu segment of this fault. Research on the characteristics of late Quaternary activity in the Jiangsu segment of Anqiu-Juxian Fault, particularly its latest activity time, is of great significance to assessment of its earthquake ability and seismic risk. Based on field investigations on the Jiangsu segment of Anqiu-Juxian Fault, and combining with the results of fault activities identification on this fault in Suqian City, we discussed the characteristics of its activities in late Quaternary. Multiple geological sections we found in this study and the results of fault activities identification in Suqian City all indicate that there was an ancient seismic event occurring in middle period of Holocene in the segment from southern Maling Mountain to Suqian City; but the trench at Houchen village did not show any evidence of Holocene activity on the Chonggangshan segment of this fault. Based on method of shallow seismic exploration, we carried out a systematic exploration of this fault to get its accurate position and activity characteristics. The results show that Anqiu-Juxian Fault in Suqian City is mainly characterized by dextral strike-slip, associated with both thrusting and extensional movement in different positions. A series of low hills were formed along the fault in the north of Suqian City, and a small graben basin was formed in the south of Suqian City, both are controlled by the dextral strike-slip movement of this fault. The Jiangsu segment of Anqiu-Juxian Fault in general is characterized by dextral strike-slip with thrusting movement. But some parts of it are characterized by dextral strike-slip with extensional movement. The Jiangsu segment of Anqiu-Juxian Fault experienced a number of activities since the late Quaternary, with an obvious activity in Holocene. The seismic activities of Jiangsu segment of Anqiu-Juxian Fault have the characteristic of high intensity and low frequency. Its activities decrease gradually from north to south as a whole.

    late quaternary activity of the qujiang fault and analysis of the slip rate
    WANG Yang, ZHANG Bo, HOU Jian-jun, Ai Sheng
    2015, 37(4):  1177-1192.  DOI: 10.3969/j.issn.0253-4967.2015.04.019
    Asbtract ( )   PDF (9619KB) ( )  
    References | Related Articles | Metrics

    The Qujiang Fault is one of the most seismically active faults in western Yunnan, China and is considered to be the seismogenic fault of the 1970 MS7.7 Tonghai earthquake. The Qujiang Fault is located at the southeastern tip of the Sichuan-Yunnan block. In this study, we examine the geometry, kinematics, and geomorphology of this fault through field observations and satellite images. The fault is characterized by dextral strike-slip movements with dip-slip components and can be divided into northwest and southeast segments according to different kinematics. The northwest segment shows right-lateral strike-slip with normal components, whereas it is characterized by dextral movements with the northeast wall thrusting over the opposite in the southeast segment. The offset landforms are well developed along the strike of the fault with displacements ranging from 3.7m to 830m. The Late Quaternary right-lateral slip rate was determined to be 2.3~4.0mm/a through dating and measuring on the offset features. The variation of the slip and uplift rates along the fault strike corresponds well to the fault kinematics segmentation: the slip rate on the northwest segment is above 3mm/a with an uplift rate of 0.6~0.8mm/a; however, influenced by the Xiaojiang Fault, the southeast segment shows apparent thrust components. The slip rate decreases to below 3.0mm/a with an uplift rate of 1.1mm/a, indicating different uplift between the northwest and southeast segments.

    analysis about the minimum magnitude earthquake associated with surface ruptures
    TANG Mao-yun, LIU Jing, SHAO Yan-xiu, WANG Peng, YUAN Zhao-de
    2015, 37(4):  1193-1214.  DOI: 10.3969/j.issn.0253-4967.2015.04.020
    Asbtract ( )   PDF (2003KB) ( )  
    References | Related Articles | Metrics

    Statistical study of earthquakes in the past, due to the small-medium size magnitude earthquake associated with surface rupture are rare, considers that only the earthquakes beyond magnitude 6 1/2 could produce surface ruptures in the most cases. Identification of paleoseismic events is also often based on this assumption. In this paper, we summarized 56 historical moderate size earthquakes worldwide, which have clearly documented about surface ruptures from 1950 to 2014.Results show that the magnitude lowest limit of the earthquake associated with surface rupture may be lower than the 6 1/2 , probably is about 5, even can be as low as 3.6 under extreme conditions. Additionally, from the view of theory and practice, this paper explored the effect of control factors on surface rupture, so as to indicate that the shallow focal depth is one of the most important factors for small-medium size earthquake associated with surface rupture, also included are the high heat flow values, tensile tectonic environment and active fault with weak friction strength. Although the probability that small magnitude earthquake produces surface rupture is low, it is not impossible. In the interpretation of paleoearthquake events, it also cannot overgeneralize that the corresponding earthquake magnitude must be 6.5 or greater as long as the fracture appeared, while ignoring the possibility of some moderate size earthquakes.

    origin of the mud volcano in northern tianshan constrained by geochemical investigation
    GAO Xiao-qi, LIANG Hui, WANG Hai-tao, ZHENG Li-ming, LI Jie, ZHAO Chun-qing, XIANG Yang, ZHANG Tao
    2015, 37(4):  1215-1224.  DOI: 10.3969/j.issn.0253-4967.2015.04.021
    Asbtract ( )   PDF (1522KB) ( )  
    References | Related Articles | Metrics

    Mud volcano is a kind of structural geological phenomena under certain hydrogeological environment and can bring plenty of valuable information to the ground when it erupts, therefore, many researchers call it as "Heaven granted well" whose depth can be up to 12km. Mud volcanoes in Xinjiang are distributed in the central-west region of North Tianshan, and five of them are representative, namely, Horgus, Dushanzi, Wenquan, Poplar valley, and Sailetike. We tested the gas, fluid and solid components of these mud volcanoes through investigations and studies of topography and geomorphology, geological and hydrogeological conditions, and mud debris characteristics, and preliminary obtained the origin of these mud volcanoes based on geochemical features. Finally, the paper describes briefly that the continuous enchancement of regional crustal tectonic stress can not only give rise to the seismogenesis and earthquake occurrence, but also break the original cycle of mud volcano to bring about significant activity, therefore, the two have a certain homology relationship.

    earthquake disaster rapid assessment for emergency response supported by high-precision data of hazard bearing body
    AN Ji-wen, XU Jing-hai, NIE Gao-zhong, BAI Xian-fu
    2015, 37(4):  1225-1241.  DOI: 10.3969/j.issn.0253-4967.2015.04.022
    Asbtract ( )   PDF (6476KB) ( )  
    References | Related Articles | Metrics

    The earthquake disaster rapid assessment(EDRA)is the core technical support for the post-earthquake emergency response. At present, with the popularization of high-precision population, social and economic data, most of the subordinate units of China Earthquake Administration(CEA)have heightened the precision of hazard bearing body data used in EDRA from the original county-level precision to the 30″×30″ precision. However, while the precision of fundamental data has been heightened, no efforts have been made to improve the main algorithms and the technical process of EDRA. It turns out that the assessment has become more accurate, but the problems of the time-consuming process(10-20 minutes, probably 20 minutes or more in great earthquakes)and the low-precision losses distributions that exposed in EDRA supported by county-level precision data remain unresolved.This paper introduces the high-precision(30″×30″)hazard bearing body data, and describes the principle of EDRA and its implementation under the support of county-level precision data at first. Then the paper elaborates the principle of improving EDRA's data foundation using high-precision hazard bearing body data, the principle of improving the computation efficiency and persisting the data precision in the assessment process by means of the cell-to-cell grid algebraic operation, and the method for improving the assessment speed through the segmentation and reorganization of the technical process of EDRA.It is validated that through the improvements, the EDRA has become more accurate and much less time-consuming(less than 1 minute), and is able to output high-precision(30″×30″)distributions of seismic losses. The high-precision hazard bearing body data of wide range are the simulated data but not the survey data. Though the data have been simulated based on the census data, there is still a gap between their accuracy and the real situation. Further research and optimization on the data are needed.