Loading...

Table of Content

    20 June 2016, Volume 38 Issue 2
    Research Paper
    ACTIVE FAULTS AND THEIR FORMATION MECHANISM IN THE EAST SEGMENT OF QIULITAGE ANTICLINE BELT, KUQA DEPRESSION
    LI Sheng-qiang, ZHANG Ling, YANG Xiao-ping, HUANG Wei-liang, HUANG Xiong-nan, YANG Hai-bo
    2016, 38(2):  223-239.  DOI: 10.3969/j.issn.0253-4967.2016.02.001
    Asbtract ( )   PDF (12955KB) ( )  
    References | Related Articles | Metrics

    Based on geological and geomorphologic characteristics of the surface faults acquired by field investigations and subsurface structure from petroleum seismic profiles, this paper analyzes the distribution, activity and formation mechanism of the surface faults in the east segment of Qiulitage anticline belt which lies east of the Yanshuigou River and consists of two sub-anticlines:Kuchetawu anticline and east Qiulitage anticline. The fault lying in the core of Kuchetawu anticline is an extension branch of the detachment fault developed in Paleogene salt layer, and evidence shows it is a late Pleistocene fault. The faults developed in the fold hinge in front of the Kuchetawu anticline in a parallel group and having a discontinuous distribution are fold-accommodation faults controlled by local compressive stress. However, trenching confirms that these fold-accommodation faults have been active since the late Holocene and have recorded part of paleoearthquakes in the active folding zone. The fault developed in the south limb near the core of eastern Qiulitage anticline is a low-angle thrust fault, likely a branch of the upper ramp which controls the development of the eastern Qiulitage anticline. The faults lying in the south limb of eastern Qiulitage anticline are shear-thrust faults, which are developed in the steeply dipping frontal limb of the fault-propagation folds, and also characterized by group occurrence and discontinuous distribution. Several fault outcrops are discovered near Gekuluke, in which the Holocene diluvial fans are dislocated by these faults, and trench shows they have recorded several paleoearthquakes. The surface anticlines of rapid growth and associated accommodation faults are the manifestations of the deep faults that experienced complex folding deformation and propagated upward to the near surface, serving as an indicator of faulting at depth. The fold-accommodation faults are merely local deformation during the folding process, which are indirectly related with the deep faults that control the growth of folds. The displacement and slip rate of these surface faults cannot match the kinematics parameters of the deeper fault, which controls the development of the active folding. However, these active fold-accommodation faults can partly record paleoearthquakes taking place in the active folding zone.

    GEOMORPHIC FEATURES OF THE SHULE RIVER DRAINAGE BASIN IN QILIANSHAN AND ITS INSIGHT INTO TECTONIC IMPLICATIONS
    SU Qi, YUAN Dao-yang, XIE Hong, SHAO Yan-xiu, LIANG Ming-jian1. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China;
    2. Lanzhou National Observatory of Geophysic
    2016, 38(2):  240-258.  DOI: 10.3969/j.issn.0253-4967.2016.02.002
    Asbtract ( )   PDF (5659KB) ( )  
    References | Related Articles | Metrics
    Because of the strong uplift of the Qilian Shan since late Cenozoic,the drainage basins that are derived from the mountains have undergone strong tectonic deformation.So the typical geomorphology characteristics of these drainage basins may indicate the strong tectonic movement in the region.For example,the Shule River drainage basin,which originates from the western part of the Qilian Shan owns unique geomorphology characteristics which may indicate the neotectonic movement.
    Stream networks of the Shule drainage basin extracted from the DEM data based on GIS spatial analysis technology are graded into five levels using Strahler classification method.Four sub-catchments,numbered 1,2,3 and 4 are chosen for detailed analysis.Furthermore,the four sub-catchments,the hypsometric integral curves,Hack profiles,SL index and average slope of the Shule drainage basin are determined by GIS tools.In addition,we analyzed the slope spectrum of the Shule drainage basin.
    The average elevation of the Shule drainage basin is very high,however,the slope of the drainage basin is very low,the gentle slope occupies so large area proportion that the slope spectrum shows a unimodal pattern and a peak value is in low slope region (0°~5°),so tectonic movement has a strong influence on the drainage basin.Under the intensive impact of the tectonic movement of the active fault and regional uplift,the hypsometric integral curve is sigmoid,revealing that the Shule drainage basin is in the mature stage.The Hack profile is on a convex,the longitudinal profile is best fitted by linear fitting and the abnormal data of the SL index of the Shule River has a good fit with the section through which the active fault traverses,that means the tectonic movement of the active fault has strong influence on the river's SL index.It is worth noting that lithologic factors also have great impact on the river geomorphology in some sections.
    According to the above analysis,we recognize that in the interior of active orogen,the evolution of river geomorphology usually is influenced by tectonic movement and reveals the regional neotectonics in turn.
    INFLUENCES OF OBLIQUITY ANGLE DIFFERENCE ON THE EVOLUTION OF FEN-WEI RIFT: A STUDY FROM SEGMENTED TRANSTENSION CLAY MODEL
    ZHUO Yan-qun, S. A. Bornyakov, GUO Yan-shuang, MA Jin, S. I. Sherma
    2016, 38(2):  259-277.  DOI: 10.3969/j.issn.0253-4967.2016.02.003
    Asbtract ( )   PDF (9859KB) ( )  
    References | Related Articles | Metrics

    The Fen-Wei rift is composed of a series of Cenozoic graben basins, which extends in an S-shape and strikes mainly NNE. Two distinct types of basins are defined in the Fen-Wei rift. The NEE-striking basins(or basin system) are bounded by active faults of mainly normal slip while the NNE-striking basins are characterized by their dextral strike-slip boundary faults. The adjacent NEE-striking basins(or basin systems) are linked by the arrangement of NNE-striking basins and horsts that is called the linking zone in this study. The segmentation of the Fen-Wei rift shows that the geometry and the activity of different rift segments are varied. The southern and northern rift segments strike NEE and are characterized by tensile movement while the central rift segment strikes NNE with transtensional motion. Previous field surveys show that the ages of the Cenozoic basins in the Fen-Wei rift are old in the southern rift segment, medium in the northern rift segment, and young in the central rift segment. The sizes of linking zones are large in the central rift segment, medium in the northern rift segment, and small in the southern rift segment. In addition, the east tip of Xinding Basin propagates towards NEE along the northern rift segment and the west tip of the basin grows towards NNE, while the shape of Linfen Basin is almost antisymmetric with respect to the Xinding Basin. However, the previous laboratory or numerical simulations cannot explain these features because they didn't pay enough attention to the control of the rift segmentation on the evolution of NEE-striking basins and their linking zones. In this study, based on the previous field studies, we study the fracture process of a clay layer under the segmented dextral transtension of the basement. The spatiotemporal evolution of the deformation field of the clay layer is quantitatively analyzed via a digital image correlation method. The experiment reproduced the main architecture of the Fen-Wei rift. The results show that:(1) The chronological order of basin initiation and the different sizes of linking zones in deferent rift segments are caused by the different obliquity angles(the angle between the rift trend and the displacement direction between the opposite sides of the rift) among the southern, northern and central rift segments.(2) The interaction between adjacent NEE-striking basins leads to the formation of NNE-striking linking zones.(3) The interaction between adjacent rift segments may cause the special distribution of Xinding and Linfen Basins. Thus, we propose that the differences of the Fen-Wei rift segments are mainly controlled by the different obliquity angles. The lack of considering the influences of pre-exiting structures leads to the limited simulation of the details within the southern and northern segments of the Fen-Wei rift. Further studies may improve the model if this is taken into account.

    COSEISMIC DISPLACEMENT AND FAULT SLIP OF THE MW6.1 NAPA EARTHQUAKE IN AMERICA REVEALED BY SENTINEL-1A INSAR DATA
    ZUO Rong-hu, QU Chun-yan, ZHANG Guo-hong, SHAN Xin-jian, SONG Xiao-gang, WEN Shao-yan, XU Xiao-bo
    2016, 38(2):  278-289.  DOI: 10.3969/j.issn.0253-4967.2016.02.004
    Asbtract ( )   PDF (7442KB) ( )  
    References | Related Articles | Metrics

    We achieved the coseismic displacements of the Napa MW6.1 earthquake located in California US occurring on 24 August 2014 by using InSAR data from the newly launched ESA's Sentinel-1A satellite. The 30m×30m ASTER GDEM was used to remove the terrain effect, and phase unwrapping method of branch-cut algorithm was adopted. In order to obtain a better coseismic displacement field, we also tested 90m×90m SRTM data to remove the terrain effect and Minimum Cost Flow algorithm to unwrap the phase. Results showed that the earthquake caused a significant ground displacement with maximum uplift and subsidence of 0.1m and -0.09m in the satellite light of sight(LOS). Based on the Sentinel-1A dataset and sensitivity based iterative fitting(SBIF) method of restrictive least-squares algorithm, we obtained coseismic fault slip distribution and part of the earthquake source parameters. Inversion results show that the strike angle is 341.3°, the dip angle is 80°, rupture is given right-lateral fault, average rake angle is -176.38°, and the maximum slip is ~0.8m at a depth of 4.43km. The accumulative seismic moment is up to 1.6×1018N·m, equivalent to a magnitude of MW6.14.

    FRICTIONAL SLIDING OF PLAGIOCLASE GOUGE UNDER LOWER-CRUST TEMPERATURE AND RELATIVELY LOW EFFECTIVE NORMAL STRESS
    YAO Sheng-nan, HE Chang-rong
    2016, 38(2):  290-302.  DOI: 10.3969/j.issn.0253-4967.2016.02.005
    Asbtract ( )   PDF (3078KB) ( )  
    References | Related Articles | Metrics

    The discovery of tremors on the lower crust portion of the San Andreas Fault has attracted more attention on the mechanical properties of the lower crust in recent years, and some experimental studies have been carried out to understand the mechanical behavior. Previous experiments under effective normal stresses of 200MPa have shown that pyroxene and plagioclase mineral separated from the gabbro and their mixtures all show velocity weakening in the lower-crust temperature range, which results in unstable slip when frictional sliding is the dominant deformation mechanism. This work is to examine whether the velocity-weakening behavior of plagioclase gouge also applies to relatively lower effective normal stress. Our experiments were performed under effective normal stress of about 100MPa, with a constant confining pressure control, with pore pressure of 30MPa and temperature of 100℃ to 600℃. We found that the frictional sliding of plagioclase are basically the same with the previous results obtained under effective normal stress of 200MPa, both of which show velocity weakening over the entire temperature range. The only difference is the out-of-trend drop of constitutive parameter a at 600℃ for the lower effective normal stress of 100MPa. It is thus concluded that reducing the effective normal stress has little effect on the sliding stability of plagioclase, and the previous conclusion made for mechanical behavior of the lower crust that unstable slips are possible therein also applies to the lower effective normal stress of 100MPa.

    HIGH-ACCURACY ANALYSIS OF SOIL HYDROGEN ANOMALY IN FAULT ZONE
    FAN Xue-fang, ZHANG Lei, LI Zi-hong, TAO Jing-ling
    2016, 38(2):  303-315.  DOI: 10.3969/j.issn.0253-4967.2016.02.006
    Asbtract ( )   PDF (2749KB) ( )  
    References | Related Articles | Metrics

    Hydrogen is recognized as one of the most useful gases to detect fault activities. Based on long-term high-accuracy soil hydrogen observation data in fault zones, the paper evaluates the reliability of data according to the distribution of measurements. Through the evaluation of earthquake-reflecting ability of hydrogen concentration, we consider that there is a certain corresponding relationship between hydrogen concentration and seismic activity and we present the judging index for this anomaly. Hydrogen concentration characteristics with the earthquakes within the range of 350km around the station were analyzed, especially the two earthquakes, which occurred on October 24, 2010 and March 8, 2011 in Taikang, Henan Province, with magnitude MS4.6 and MS4.1 respectively. The observation station is located at Xiaxian in Shanxi Province, 300km away from the epicenter. In a week before the two earthquakes, high-accuracy soil hydrogen concentration measurements showed similar anomaly variation, which was increasing abruptly, then decreasing, and after the earthquakes it returned to background level. Overall, the changing scope was more than 20 times of the background value. We concluded that the anomaly was affected by tectonic setting of the earthquakes. The similar hydrogen distribution pattern recorded at the same station is attributed to the same tectonic position and focal mechanism solution. The hydrogen could be an effective tool for short-term and imminent earthquake prediction, which provides reference for short-term and imminent earthquake prediction in areas with high earthquake risk.

    FAULT ACTIVITY OF THE SOUTHWESTERN SEGMENT OF THE EASTERN BRANCH OF XINYI-LIANJIANG FAULT ZONE IN GUANGDONG PROVINCE
    ZHANG Long-sheng, ZHOU Ben-gang, JI Feng-ju, YANG Xiao-ping, AN Yan-fen
    2016, 38(2):  316-328.  DOI: 10.3969/j.issn.0253-4967.2016.02.007
    Asbtract ( )   PDF (7786KB) ( )  
    References | Related Articles | Metrics

    The NE-trending Xinyi-Lianjiang fault zone is a tectonic belt, located in the interior of the Yunkai uplift in the west of Guangdong Province, clamping the Lianjiang synclinorium and consisting of the eastern branch and the western branch. The southwestern segment of the eastern branch of Xinyi-Lianjiang fault zone, about 34km long, extends from the north of Guanqiao, through Lianjiang, to the north of Hengshan. However, it is still unclear about whether the segment extends to Jiuzhoujiang alluvial plain or not, which is in the southwest of Hengshan. If it does, what is about its fault activity? According to ‘Catalogue of the Modern Earthquakes of China’, two moderately strong earthquakes with magnitude 6.0 and 6.5 struck the Lianjiang region in 1605 AD. So it is necessary to acquire the knowledge about the activity of the segment fault, which is probably the corresponding seismogenic structure of the two destructive earthquakes. And the study on the fault activity of the segment can boost the research on seismotectonics of moderately strong earthquakes in Southeast China. In order to obtain the understanding of the existence of the buried fault of the southwestern segment, shallow seismic exploration profiles and composite borehole sections have been conducted. The results indicate its existence. Two shallow seismic exploration profiles show that buried depth of the upper breakpoints and vertical throw of the buried fault are 60m and 4~7m(L5-1 and L5-2 segment, the Hengshan section), 85m and 5~8m(L5-3 segment), 73m and 3~5m(Tiantouzai section), respectively and all of them suggest the buried fault has offset the base of the Quaternary strata. Two composite borehole sections reveal that the depth of the upper breakpoints and vertical throws of the buried segment are about 66m and 7.5m(Hengshan section) and 75m and 5m(Tiantouzai section), respectively. The drilling geological section in Hengshan reveals that the width of the fault could be up to 27m. Chronology data of Quaternary strata in the two drilling sections, obtained by means of electron spin resonance(ESR), suggest that the latest activity age of the buried fault of the southwestern segment is from late of early Pleistocene(Tiantouzai section) to early stage of middle Pleistocene(Hengshan section). Slip rates, obtained by Hengshan section and Tiantouzai section, are 0.1mm/a and 0.013mm/a, respectively. As shown by the fault profile located in a bedrock exposed region in Shajing, there are at least two stages of fault gouge and near-horizontal striation on the fault surface, indicating that the latest activity of the southwestern segment is characterized by strike-slip movement. Chronology data suggest that the age of the gouge formed in the later stage is(348±49) ka.

    A PRELIMINARY STUDY ON UPPER CRUSTAL VELOCITY STRUCTURE IN THE THREE GORGES RESERVOIR AREA
    LUO Jia-hong, MA Wen-tao
    2016, 38(2):  329-341.  DOI: 10.3969/j.issn.0253-4967.2016.02.008
    Asbtract ( )   PDF (7555KB) ( )  
    References | Related Articles | Metrics

    In this paper, using the double difference tomography method, the P wave and S wave velocity structures of the earth's crust beneath the Three Gorges Reservoir are inversed based on the high-resolution seismic data of seismological stations recorded from March 2009 to December 2010. According to the research results, the P wave and S wave crust velocity zones in the Three Gorges Reservoir area show a high VP value area and a VS value area with value low in the lower part and high in the upper part, distributing respectively at both sides of Shennongxi River to western Xietan in the north of Badong and near the outlet of the Xiangxi River at the northern section on Xiannvshan Fault. In the region from the two sides of Shennong River in the north of Badong to the western Xietan, microseisms are distributed in three zones in near east-west direction, with steep and north-dipping sections, spreading along the high-to-low velocity transition zone of the P and S wave. On the northern section of Xiannvshan Fault, small earthquakes are distributed along the NNW-trending Xiannvshan Fault, and the geological section reveals a steep and linear distribution along the transitional zone between the high VP value area and the VS value that is low in the upper and high in the lower part. Joint inversion results show a good consistency of the planes of the microseisms with the distribution of active faults.

    RESTUDY ON HYPOCENTRAL LOCATION AND SEISMOGENIC TECTONIC OF THE JIUJIANG-RUICHANG MS5.7 EARTHQUAKE SEQUENCE, JIANGXI PROVINCE
    LUO Li, Lü Jian, ZENG Wen-jing, TANG Lan-rong
    2016, 38(2):  342-351.  DOI: 10.3969/j.issn.0253-4967.2016.02.009
    Asbtract ( )   PDF (2218KB) ( )  
    References | Related Articles | Metrics

    We collected seismic records of 228 ML≥1.0 Jiujiang-Ruichang MS5.7 earthquake sequence from Dec.26, 2005 to Jun. 30, 2006. By using double-difference method combined with waveform cross-correlation, those earthquakes were relocated and finally the accurate source parameters of 224 earthquakes were obtained. The errors are about 0. 5km in horizontal and less than 2km in vertical direction, respectively. It was found that the depth of earthquake sequence concentrates in 8~14km range, and the epicenters are distributed along both NW and NE direction, and dominantly along NW direction. Combined with the focal mechanism, the distribution direction and the tectonic setting, we infer that the rupture of the NW-trending fault caused the MS5. 7 main shock, and then the rupture probably encountered an asperity and triggered the MS4. 8 strong aftershock. The NE-trending fault came into a seismically quiet period by stress adjustment in a short time, while the NW-trending fault released stress for a long time which caused a series of aftershocks. The MS5. 7 main shock is caused by the NW striking Yangjisshan-Wushan-Tongjiangling Fault and the MS4. 8 aftershock occurred on the NE striking Liujia-Fanjiapu-Chengmenshan Fault.

    ELECTRICAL STRUCTURE OF UPPER CRUST IN THE SOURCE REGION OF JINGGU YUNNAN MS6.6 EARTHQUAKE AND THE SEISMOGENIC ENVIRONMENT
    CHENG Yuan-zhi, TANG Ji, DENG Yan, DONG Ze-yi
    2016, 38(2):  352-369.  DOI: 10.3969/j.issn.0253-4967.2016.02.010
    Asbtract ( )   PDF (7492KB) ( )  
    References | Related Articles | Metrics

    The October 7, 2014 MS6.6 earthquake in southwest of Jinggu in the southwestern Yunnan Province occurred as the result of shallow strike-slip faulting within the crust of the Eurasia plate in the broad plate boundary region between the India and Eurasia plates. The strike of fault plane is 140°, and the aftershock distribution shows that the rupture plane is also NNW-trending. Tectonics of the region are controlled by the convergence of the India plate with Eurasia, which has driven the uplift of the Himalayas to the west of this earthquake, and has caused the formation of numerous intraplate continental transform structures in the surrounding region. The pattern of elastic-wave radiation from the earthquake is consistent with the shock occurring either as the result of right-lateral faulting on a northwest-trending fault or as the result of left-lateral faulting on a northeast trending fault. Faults of both types have been mapped in southwestern Yunnan, and it is unclear at this time which type of fault hosted this event. Magnetotelluric survey line is across Jinggu earthquake zone. The advanced data processing and analysis technology of MT is employed and the quantitative data from field surveys are analyzed to acquire the reliable electrical model. The MT data are inverted using nonlinear conjugate gradient (NLCG) inversion algorithm. At last, the interpretation of the electrical model is performed considering the geology and the other geophysical data. Based on the final inversion model of the target profile, it is found that:(1) Electrical structure of the source region can be divided into four layers:The surface is relatively low resistivity layer(0~5km), consisting mainly of Mesozoic and Cenozoic Basin sedimentary rocks, the value of resistivity is 100Ω·m; The high resistivity layer(5~10km) in upper crust mainly consists of Proterozoic metamorphic rocks, with resistivity higher than 1 000Ω·m; there are the upper crust high-conductivity layer(15~25km) and crust-mantle transition zone(blow 25km); (2) The focal depth of the Jinggu earthquake is about 10km, which locates in the interface between high resistivity layer and high-conductivity layer; (3) Most of the focal depths of the aftershocks are in the range of 5km and 10km, and the two depths(5km & 10km) are corresponding to the resistivity gradient belt.

    TRANSVERSE STRUCTURES FEATURES OF DIFFERENT DEPTHS DERIVED FROM BOUGUER GRAVITY ANOMALIES IN THE SOUTHERN SEGMENT OF TAN-LU FAULT ZONE
    WANG Xin, ZHANG Jing-fa, JIANG Wen-liang, JIANG Hong-bo, TIAN Tian, GAO Min, FU Ping-jie
    2016, 38(2):  370-385.  DOI: 10.3969/j.issn.0253-4967.2016.02.011
    Asbtract ( )   PDF (8444KB) ( )  
    References | Related Articles | Metrics

    To research the faults distribution and deep structures in the southern segment of Tan-Lu fault zone(TLFZ) and its adjacent area, this paper collects the Bouguer gravity data and makes separation by the multi-scale wavelet analysis method to analyze the crustal transverse structure of different depths. Meanwhile Moho interface is inversed by Parker variable density model. Research indicates that the southern segment of TLFZ behaves as a NNE-directed large-scale regional field gravity gradient zone, which separates the west North China-Dabie orogen block and the east Yangtze block, cutting the whole crust and lithosphere mantle. There are quite differences of density structures and tectonic features between both sides of this gradient belt. The sedimentary and upper crustal density structure is complex. The two east branches of TLFZ behave as linear gravity anomalous belt throughout the region, whereas the two west branches of TLFZ continue to extend after truncating the EW-trending gravity anomaly body. The lower crustal density structure is relatively simple. TLFZ behaves as a broad and gentle low abnormal belt, which reflects the Cretaceous-Paleogene extension environment caused graben structure. The two west branches of TLFZ, running through Hefei city, extend southward along the west margin of Feidong depression and pinch out in Shucheng area due to the high density trap occlusions in the south of Shucheng. The Feizhong Fault, Liu'an-Hefei Fault, and Feixi-Hanbaidu Fault intersect the two west branch faults of TLFZ without extending to the east. Recent epicenters are mainly located in conversion zones between the high-density and the low-density anomaly, especially in TLFZ and the junction of the faults, where earthquakes frequently occurred in the upper and middle crust. As strong earthquakes rarely occur in the southern segment of TLFZ, considering its deep feature of abrupt change of the Moho and intersections with many EW-trending faults, the hazard of strong earthquake cannot be ignored.

    ESTIMATING THE MAGNITUDE OF TECTONIC STRESS BASED ON THE FRICTION CRITERIA OF FAULT AND ANALYSING THE PARAMETERS' INFLUENCE
    CAO Hui-jing, CUI Xiao-feng, FAN Wen-jie
    2016, 38(2):  386-396.  DOI: 10.3969/j.issn.0253-4967.2016.02.012
    Asbtract ( )   PDF (2095KB) ( )  
    References | Related Articles | Metrics

    Based on Zoback's method for estimating the tectonic stress magnitude and the two assumptions, we consider the conditions that three principal stresses are vertical principal stresses respectively(corresponding to three kinds of tectonic stress types). We deduced the formulae for estimating the tectonic stress magnitude by using the stress form factor and frictional strength of the fault and discussed the correlative influence of friction coefficient, pore pressure parameter and stress form factor on the stress value. When the maximum principal stress is approximately horizontal (when stress regime is strike-slip or reverse), the maximum principal stress (or the slope of stress increasing linearly with depth) is positively related with the friction coefficient and negatively related with the pore pressure coefficient. When the minimum principal stress is approximately horizontal (when stress regime is strike-slip or normal), the minimum principal stress (or the slope with depth) is negatively related to the friction coefficient, and positive to the pore pressure. Besides, these three parameters have great influence on the estimation of the tectonic stress magnitude. If the friction coefficient is too big and the pore pressure is too small, there could be a wide difference between the slope of the maximum principal stress increasing with depth and the slope of the minimum principal stress increasing with depth, which could lead to an unreasonable result. Our method is just an approximate estimation for the tectonic stress magnitude when crustal rocks have undergone brittle rupture or frictional sliding. The estimated results are not the tectonic stress magnitude when crust is in steady state.

    A RAPID MAPPING SYSTEM IN CHINESE ACTIVE FAULT SURVEY PROJECT
    WU Xi-yan, YU Gui-hua, DU Ke-ping, XU Xi-wei
    2016, 38(2):  397-409.  DOI: 10.3969/j.issn.0253-4967.2016.02.013
    Asbtract ( )   PDF (2311KB) ( )  
    References | Related Articles | Metrics

    Active fault survey, which is one kind of fundamental researches for reducing disaster risk from earthquake, has been implemented by multiple governmental agencies since the early 1990s in China. Chinese government sponsored some active fault survey projects these years. These researches and projects use a series of thematic maps to describe their processes, results and achievement. Since geography information science was introduced in late 1990s and applied since 2000s to these active fault survey projects, seismologists and experts began to draw thematic maps by this new technology. A convenient and fast way for seismologists and experts to produce atlas of active fault survey products is an important accelerator to achieve these projects.This paper studies on the rapid methodology of producing active fault survey atlas, which is basically built on the processes and contents of active fault projects in recent years, and introduces the methodology on two aspects of standardization and software development. This study has been applied to the ongoing active fault survey projects, and resulted in more effective process, normative data and beautiful atlas. Thus these researches will be easier to be used in future application such as publication, internet sharing, and city development. This methodology has reference value to similar map-producing system in standardization and software development.

    NUMERICAL SIMULATION OF LONG-TERM DEFORMATION OF TIBETAN PLATEAU AND SURROUNDING AREA
    DONG Pei-yu, HU Cai-bo, SHI Yao-lin
    2016, 38(2):  410-422.  DOI: 10.3969/j.issn.0253-4967.2016.02.014
    Asbtract ( )   PDF (6247KB) ( )  
    References | Related Articles | Metrics

    The subduction of the Indian plate underneath Eurasian plate results not only in deformation and movement of the elastic upper crust, but also flow of the ductile lower crust in the high temperature and high pressure which drags the brittle upper crust to move at the same time. These two actions work together producing the present movement and deformation field in Tibetan plateau. The dynamics progress has been verified by GPS observation data. Therefore, in a two-dimension plain model, only the elastic deformation with the boundary action at the upper crust cannot explain the deformation well, the drag force acted on the base of upper crust by the drag of ductile flow of the lower crust also need to be considered. However, it's hard to figure out the magnitude and direction of the drag force. Thus, we established a two-dimension plain elastic finite element model, with the equivalent-body force approach to simulate the drag force. With the internal GPS observation data of Tibetan plateau as constraint condition, we calculated inversely the drag force of key nodes in the model with trial method, and the other nodes in the model with bilinear interpolation method. Finally, we got the drag forces(nodal forces, unit:N) caused by the difference flow of ductile lower crust dragging the brittle upper crust, which are distributed mainly in the region of 86°~100°E and 26°~32°N, the direction is east and south, and the maximum reaches to 1e8N; in some areas in the western part of the study region at 31°~36°N and 76°~80°E, the direction is west, and the maximum reaches to 1e7N. All these work provides a new thought for further research on long-term dynamic mechanism of surface deformation in Tibetan plateau and its surrounding area.

    THE APPLICATION OF PETROLEUM SEISMIC DATA TO THE BURIED ACTIVE FAULT DETECTION——A CASE STUDY OF ACTIVE FAULTS SURVEYING IN SONGYUAN CITY
    YU Yang, SHEN Jun, YU Xiao-hui, WU Xiao-ge
    2016, 38(2):  423-433.  DOI: 10.3969/j.issn.0253-4967.2016.02.015
    Asbtract ( )   PDF (8131KB) ( )  
    References | Related Articles | Metrics

    Located in the south of the Songliao Basin, Songyuan City is one of the few high seismic intensity regions (Ⅷ degree regions) in Northeast China, where a magnitude 6(3/4) earthquake took place in 1119. Since 2013, many earthquakes of magnitude above 5 have occurred in Chaganhua Town which is 100km southwest of Songyuan. The faults in the study region are almost all in a concealed state and covered by the Quaternary system, therefore, geophysical investigation, drilling and other similar means are required to determine their distribution, occurrence, nature and active period. Many seismic explorations in this region aiming at surveying the oil bearing structure have been conducted by Jilin Oilfield, which provides detailed seismic exploration information for preliminary detection of active faults. In this paper, the main features of petroleum-related seismic data and major methods for extracting tectonic information are presented; on the plain, the trace information of the main structure is extracted by the t0 interface contour map which allows direct reflection of rises and falls of stratal interfaces and the tectonic characteristics of the corresponding geologic period; on the section, the "extending upwards" characteristics of faults are captured by tracing and marking geological phenomena in the reflective standard layer, faults, the surface of unconformity and so on. Under the comprehensive use of the "3D" structure in the interpretation of the results, accurate spatial distribution information of main faults are obtained in the study region, this offers an effective approach to preliminary judgment of the activity of faults in this region. Meanwhile, the active age of the target faults is identified by superimposing the deep and shallow seismic data and integrating with the drilling detection.

    LATE QUATERNARY SINISTRAL STRIKE-SLIP ACTIVITIES OF SANWEI SHAN FAULT IN THE NORTH OF TIBETAN PLATEAU
    YUN Long, YANG Xiao-ping, SONG Fang-min, WANG Ju
    2016, 38(2):  434-446.  DOI: 10.3969/j.issn.0253-4967.2016.02.016
    Asbtract ( )   PDF (8321KB) ( )  
    References | Related Articles | Metrics

    Sanwei Shan Fault is located in the north of Tibet, which is a branch of eastern segment of Altyn Tagn fault zone. This fault is distributed along the boundary of fault facet and the Quaternary, with the total length of almost 150km. The fault is a straight-line structure read from the satellite image. Based on the spatial distribution of the fault, three segments are divided, namely, Xishuigou-Dongshuigou segment, Dongshuigou-West Shigongkouzi segment and West Shigongkouzi-Suangta segment, these three segments are distributed by left or right step.Though field microgeomorphology investigation along Sanwei Shan Fault, it has been found that two periods of alluvial-pluvial fans are distributed in front of Sanwei Shan Mountain, most of which are overstepped. Comparing the distribution of alluvial-pluvial fans with their formation age in the surrounding regions, and meanwhile, taking the results of optical stimulated luminescence(OSL) dating, it's considered that the formation age of the older alluvial-pluvial fans, which are distributed in northern Qilian Shan, inside of Hexi Corridor and western Hexi Corridor(including the Sanwei Shan piedmont fans), is between later period of late Quaternary and earlier period of Holocene. The gullies on the older fan and ridges have been cut synchronously. The maximum and minimum sinistral displacement is 5.5m and 1.7m, but majority of the values is between 3.0~4.5m. Taking the results from the OSL dating, we conclude that the minimum sinistral strike-slip rate is(0.33±0.04) mm/a since 14 ka BP and(0.28±0.03) mm/a since 20 ka BP.

    Academic discussion
    RESEARCH ON ACTIVITIES OF THE GUDIAN FAULT IN SONGYUAN, JILIN PROVINCE
    WANG Lei, SHEN Jun, YU Xiao-hui, WAN Yong-kui, YU Yang, SHAO Bo, YANG Chuan-cheng
    2016, 38(2):  447-457.  DOI: 10.3969/j.issn.0253-4967.2016.02.017
    Asbtract ( )   PDF (6543KB) ( )  
    References | Related Articles | Metrics

    The Gudian Fault in the southwest of Songyuan is an important fault in the central depression of the Songliao Basin. It was recognized from the petroleum exploration data. Based on the data, we conducted shallow seismic exploration, drilling exploration, age determination(OSL) and topography measurement. The fault features and its motion characteristics are analyzed with the results of shallow seismic exploration. With stratigraphic correlation and optical stimulated luminescence dating, the latest active age of the fault is determined. The surface relief of the region to the southeast of the drilling site is relatively larger than surrounding places. An 800m long section across the fault was measured by GPSRTK, and the deformation amount across the zone was calculated. Four conclusions are drawn in this paper:(1) The Gudian Fault is arcuate in shape and shows a property of inverse fault with a length of about 66km in the reflection interface T1(bottom of the upper Cretaceous Nenjiang Group). (2) The middle part of the fault rupture is wider than the ends, narrowing or dying out outwards. According to this feature and the rupture of the bottom of the fourth segment of the upper Cretaceous Nenjiang Group, the fault can be divided into three segments, e.g. Daliba Village-Gaizijing-Guyang segment, Guyang-Shenjingzi-Julongshan Village segment and Julongshan Village-Caiyuanzi segment. (3) The yellow silt layer at the base of the upper Pleistocene series ((33.66±3.27) ka BP~50ka BP) is offset by the Gudian Fault, while the upper tawny silt layer is not influenced by the fault. Thus, the fault belongs to late Pleistocene active fault. (4) The amount of geomorphic deformation around Shenjingzi is 9m. The depth of the bottom of the upper Pleistocene series is 11m and the Huangshan Group of the mid Pleistocene series exposes to the southeast of the deformation zone. Therefore, the throw of the bottom of the upper Pleistocene series is about 20m at the sides of the deformation zone. In addition, the Qianguo M6(3/4) earthquake occurred in Songyuan area in 1119 AD. Though some studies have been done, arguments still exist on the seismogenic structure of the Qianguo M6(3/4) earthquake. Combined with others studies, Gudian Fault is considered as the seismogenic structure of the Qianguo M6(3/4) earthquake.

    THE RESEARCH OF THE SEISMOGENIC STRUCTURE OF THE LUSHAN EARTHQUAKE BASED ON THE SYNTHESIS OF THE DEEP SEISMIC DATA AND THE SURFACE TECTONIC DEFORMATION
    WANG Lin, ZHOU Qing-yun, WANG Jun, LI Wen-qiao, ZHOU Lian-qing, CHEN Han-lin, SU Peng, LIANG Peng
    2016, 38(2):  458-476.  DOI: 10.3969/j.issn.0253-4967.2016.02.018
    Asbtract ( )   PDF (10395KB) ( )  
    References | Related Articles | Metrics

    The seismogenic structure of the Lushan earthquake has remained in suspensed until now. Several faults or tectonics, including basal slipping zone, unknown blind thrust fault and piedmont buried fault, etc, are all considered as the possible seismogenic structure. This paper tries to make some new insights into this unsolved problem. Firstly, based on the data collected from the dynamic seismic stations located on the southern segment of the Longmenshan fault deployed by the Institute of Earthquake Science from 2008 to 2009 and the result of the aftershock relocation and the location of the known faults on the surface, we analyze and interpret the deep structures. Secondly, based on the terrace deformation across the main earthquake zone obtained from the dirrerential GPS meaturement of topography along the Qingyijiang River, combining with the geological interpretation of the high resolution remote sensing image and the regional geological data, we analyze the surface tectonic deformation. Furthermore, we combined the data of the deep structure and the surface deformation above to construct tectonic deformation model and research the seismogenic structure of the Lushan earthquake. Preliminarily, we think that the deformation model of the Lushan earthquake is different from that of the northern thrust segment ruptured in the Wenchuan earthquake due to the dip angle of the fault plane. On the southern segment, the main deformation is the compression of the footwall due to the nearly vertical fault plane of the frontal fault, and the new active thrust faults formed in the footwall. While on the northern segment, the main deformation is the thrusting of the hanging wall due to the less steep fault plane of the central fault. An active anticline formed on the hanging wall of the new active thrust fault, and the terrace surface on this anticline have deformed evidently since the Quaterary, and the latest activity of this anticline caused the Lushan earthquake, so the newly formed active thrust fault is probably the seismogenic structure of the Lushan earthquake. Huge displacement or tectonic deformation has been accumulated on the fault segment curved towards southeast from the Daxi country to the Taiping town during a long time, and the release of the strain and the tectonic movement all concentrate on this fault segment. The Lushan earthquake is just one event during the whole process of tectonic evolution, and the newly formed active thrust faults in the footwall may still cause similar earthquake in the future.