[1] |
晁洪太, 孙岩, 王志才, 等. 2016. 同震和无震剪切滑移作用的纳微米级构造观察与分析[J]. 矿物岩石地球化学通报, 35(1): 37—42.
|
|
CHAO Hong-tai, SUN Yan, WANG Zhi-cai, et al. 2016. Observations and analyses of nano micro-structures of coseismic stick slipping and aseismic creep slipping faults[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 37—42 (in Chinese).
|
[2] |
陈敬中. 1994. 纳米科技的发展与纳米矿物学研究[J]. 地质科技情报, 13(2): 32—38.
|
|
CHEN Jing-zhong. 1994. Development of nano science and technology and study of nanomineralogy[J]. Geological Science and Technology Information, 13(2): 32—38 (in Chinese).
|
[3] |
陈倩, 宋文磊, 杨金昆, 等. 2021. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 40(2): 345—368.
|
|
CHEN Qian, SONG Wen-lei, YANG Jin-kun, et al. 2021. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 40(2): 345—368 (in Chinese).
|
[4] |
路珍, 何昌荣. 2014. 热水条件下黑云母断层泥的摩擦强度与稳定性[J]. 地球物理学报, 57(4): 1123—1132.
|
|
LU Zhen, HE Chang-rong. 2014. The frictional strength and stability of biotite under hydrothermal conditions[J]. Chinese Journal of Geophysics, 57(4): 1123—1132 (in Chinese).
|
[5] |
马胜利. 1997. 水热作用条件下蛇纹石断层泥的摩擦强度和速度依赖性及其地震地质意义[J]. 地震地质, 19(2): 76—83.
|
|
MA Sheng-li. 1997. Frictional strength and velocity dependence of serpentine gouges under hydrothermal conditions and their seismogeological implications[J]. Seismology and Geology, 19(2): 76—83 (in Chinese).
|
[6] |
徐锡伟, 邓起东, 董瑞树, 等. 1992. 山西地堑系强震的活动规律和危险区段的研究[J]. 地震地质, 14(4): 305—316.
|
|
XU Xi-wei, DENG Qi-dong, DONG Rui-shu, et al. 1992. Study on strong earthquake activity and risk areas in the Shanxi Graben System[J]. Seismology and Geology, 14(4): 305—316 (in Chinese).
|
[7] |
姚路, 马胜利. 2013. 断层同震滑动的实验模拟——岩石高速摩擦实验的意义、 方法与研究进展[J]. 地球物理学进展, 28(2): 607—623.
|
|
YAO Lu, MA Sheng-li. 2013. Experimental simulation of coseismic fault sliding: Significance, technological methods and research progress of high-velocity frictional experiments[J]. Progress in Geophysics, 28(2): 607—623 (in Chinese).
|
[8] |
Ault A K, Jensen J L, Mc Dermott R G, et al. 2019. Nanoscale evidence for temperature-induced transient rheology and postseismic fault healing[J]. Geology, 47(12): 1203—1207.
DOI
|
[9] |
Aretusini S, Mittempergher S, Plümper O, et al. 2017. Production of nanoparticles during experimental deformation of smectite and implications for seismic slip[J]. Earth and Planetary Science Letters, 463: 221—231.
|
[10] |
Bao Z D, Ji H C, Wang Y, et al. 2022. The primary dolostone in the Meso-Neoproterozoic: Cases study on platforms in China[J]. Journal of Palaeogeography, 11(2): 151—172.
|
[11] |
Bedford J D, Faulkner D R, Lapusta N. 2022. Fault rock heterogeneity can produce fault weakness and reduce fault stability[J]. Nature Communication, 13(1): 326.
|
[12] |
Beeler N M, Tullis T E, Goldsby D L. 2008. Constitutive relationships and physical basis of fault strength due to flash heating[J]. Journal of Geophysical Research: Solid Earth, 113(B1): B01401.
|
[13] |
Ben-Zion Y. 2001. Dynamic ruptures in recent models of earthquake faults[J]. Journal of the Mechanics and Physics of Solids, 49(9): 2209—2244.
|
[14] |
Ben-Zion Y, Sammis C G. 2003. Characterization of fault zones[J]. Pure and Applied Geophysics, 160(3): 677—715.
|
[15] |
Bilek S L, Lay T. 2002. Tsunami earthquakes possibly widespread manifestations of frictional conditional stability[J]. Geophysical Research Letters, 29(14): 18-1—18-4.
|
[16] |
Bizzarri A, Cocco M. 2006. A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 1 Methodological approach[J]. Journal of Geophysical Research: Solid Earth, 111(B5): B05303.
|
[17] |
Blanpied M L, Lockner D A, Byerlee J D. 1991. Fault stability inferred from granite sliding experiments at hydrothermal conditions[J]. Geophysical Research Letters, 18(4): 609—612.
|
[18] |
Boatwright J, Cocco M. 1996. Frictional constraints on crustal faulting[J]. Journal of Geophysical Research: Solid Earth, 101(B6): 13895—13909.
|
[19] |
Boulton C, Niemeijer A R, Hollis C J, et al. 2019. Temperature dependent frictional properties of heterogeneous Hikurangi Subduction Zone input sediments, ODP Site 1124[J]. Tectonophysics, 757: 123—139.
|
[20] |
Boulton C, Yao L, Faulkner D R, et al. 2017. High-velocity frictional properties of Alpine Fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation[J]. Journal of Structural Geology, 97: 71—92.
|
[21] |
Bowden F P, Tabor D. 1950. The Friction and lubrication of solids: Part Ⅰ[M]. Clarendon Press, Oxford: 1—372.
|
[22] |
Bowden F P, Tabor D. 1964. The Friction and lubrication of solids. Part Ⅱ[M]. Clarendon Press, Oxford: 1—543.
|
[23] |
Buijze L, Guo Y, Niemeijer A R, et al. 2021. Effects of heterogeneous gouge segments on the slip behavior of experimental faults at dm scale[J]. Earth and Planetary Science Letters, 554:116652.
|
[24] |
Byerlee J. 1978. Friction of Rocks[J]. Pure and Applied Geophysics, 116(4-5): 615—626.
|
[25] |
Cai Z R, Lu L J, Huang Q T, et al. 2019. Formation conditions for nanoparticles in a fault zone and their role in fault sliding[J]. Tectonics, 38(1): 159—175.
|
[26] |
Carpenter B M, Mollo S, Viti C, et al. 2015. Influence of calcite decarbonation on the frictional behavior of carbonate-bearing gouge: Implications for the instability of volcanic flanks and fault slip[J]. Tectonophysics, 658: 128—136.
|
[27] |
Carpenter B M, Scuderi M M, Collettini C, et al. 2014. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy[J]. Journal of Geophysical Research: Solid Earth, 119(12): 9062—9076.
|
[28] |
Chen J Y, Niemeijer A R, Spiers C J. 2021. Microphysical modeling of carbonate fault friction at slip rates spanning the full seismic cycle[J]. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB021024.
|
[29] |
Chen J Y, Chen J Y, Yao L. 2023. Frictional strength, electrical conductivity, and microstructure of calcite-graphite mixtures sheared at a subseismic slip rate[J]. Tectonophysics, 868:230085.
|
[30] |
Chen X F, Elwood Madden A S, Reches Z. 2017a. Friction evolution of granitic faults: Heating controlled transition from powder-lubrication to frictional melt[J]. Journal of Geophysical Research: Solid Earth, 122(11): 9275—9289.
|
[31] |
Chen X F, Madden A S E, Reches Z. 2017b. Powder rolling as a mechanism of dynamic fault weakening[G]//Thomas M Y, Mitchell T M, Bhat HS.(Eds.), fault zone Dynamic Processes, Geophysical Monograph Series 227. American Geophysical Union, Washington: 133—150.
|
[32] |
Chester F M, Chester J S. 1998. Ultracataclasite structure and friction processes of the Punchbowl Fault, San Andreas system, California[J]. Tectonophysics, 295(1-2): 199—221.
|
[33] |
Collettini C, Niemeijer A, Viti C, et al. 2009. fault zone fabric and fault weakness[J]. Nature, 462(7275): 907—911.
|
[34] |
Collettini C, Niemeijer A R, Viti C, et al. 2011. Fault structure, frictional properties and mixed-mode fault slip behaviour[J]. Earth and Planetary Science Letters, 311(3): 316—327.
|
[35] |
Collettini C, Viti C, Tesei T, et al. 2013. Thermal decomposition along natural carbonate faults during earthquakes[J]. Geology, 41(8): 927—930.
|
[36] |
De Paola N. 2013. Nano-powder coating can make fault surfaces smooth and shiny: Implications for fault mechanics?[J]Geology, 41(6): 719—720.
|
[37] |
De Paola N, Collettini C, Faulkner D R, et al. 2008. fault zone architecture and deformation processes within evaporitic rocks in the upper crust[J]. Tectonics, 27(4): TC4017.
|
[38] |
De Paola N, Hirose T, Mitchell T, et al. 2011. Fault lubrication and earthquake propagation in thermally unstable rocks[J]. Geology, 39(1): 35—38.
|
[39] |
Den Hartog S A M, Niemeijer A, Spiers C. 2013a. Friction on subduction megathrust faults: Beyond the illite-muscovite transition[J]. Earth and Planetary Science Letters, 373: 8—19.
|
[40] |
Den Hartog S A M, Saffer D M, Spiers C J. 2014. The roles of quartz and water in controlling unstable slip in phyllosilicaterich megathrust fault gouges[J]. Earth, Planets and Space, 66(1): 78.
|
[41] |
Den Hartog S A M, Spiers C J. 2013b. Influence of subduction zone conditions and gouge composition on frictional slip stability of megathrust faults[J]. Tectonophysics, 60: 75—90.
|
[42] |
Di Stefano R, Chiarabba C, Chiaraluce L, et al. 2011. fault zone properties affecting the rupture evolution of the 2009(MW6.1)L’Aquila earthquake(central Italy): Insights from seismic tomography[J]. Geophysical Research Letters, 38(10): L10310.
|
[43] |
Di Toro G, Hirose T, Nielsen S, et al. 2006. Natural and experimental evidence of melt lubrication of faults during earthquakes[J]. Science, 311(5761): 647—649.
DOI
PMID
|
[44] |
Di Toro G, Han R, Hirose T, et al. 2011. Fault lubrication during earthquakes[J]. Nature, 471(7339): 494—498.
|
[45] |
Dieterich J H. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations[J]. Journal of Geophysical Research: Solid Earth, 84(B5): 2161—2168.
|
[46] |
Dieterich J H. 1981. Constitutive properties of faults with simulated gouge[G]// Carter NL, Friedman M, Logan JM, Sterns DW(Eds.), Mechanical Behavior of Crustal Rocks, Geophysical Monograph Series 24. American Geophysical Union, Washington: 103—120.
|
[47] |
Dieterich J H. 2007. Applications of rate- and state-dependent friction to models of fault-slip and earthquake occurrence[G]// Gerald S(Ed.), Treatise on Geophysics(Second Edition). Elsevier, Amsterdam: 107—129.
|
[48] |
Fagereng Å, Sibson R H. 2010. Mélange rheology and seismic style[J]. Geology, 38(8): 751—754.
|
[49] |
Fang Y, Elsworth D, Wang C, et al. 2018. Mineralogical controls on frictional strength, stability, and shear permeability evolution of fractures[J]. Journal of Geophysical Research: Solid Earth, 123(5): 3549—3563.
|
[50] |
Faulkner D R, Lewis A C, Rutter E H. 2003. On the internal structure and mechanics of large strike-slip fault zones: Field observations of the Carboneras fault in southeastern Spain[J]. Tectonophysics, 367(3): 235—251.
|
[51] |
Faulkner D R, Jackson C A L, Lunn R J, et al. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones[J]. Journal of Structural Geology, 32(11): 1557—1575.
|
[52] |
Fondriest M, Mecklenburgh J, Passelegue F X, et al. 2020. Pseudotachylyte alteration and the rapid fade of earthquake scars from the geological record[J]. Geophysical Research Letters, 47(22): e2020GL090020.
|
[53] |
Gase A C, Bangs N L, Van Avendonk H J A, et al. 2022. Hikurangi megathrust slip behavior influenced by lateral variability in sediment subduction[J]. Geology, 50(10): 1145—1149.
|
[54] |
Giorgetti C, Carpenter B M, Collettini C. 2015. Frictional behavior of talc-calcite mixtures[J]. Journal of Geophysical Research: Solid Earth, 120(9): 6614—6633.
|
[55] |
Goldsby D L, Tullis T E. 2011. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates[J]. Science, 334(6053): 216—218.
DOI
PMID
|
[56] |
Han R, Hirose T, Shimamoto T. 2010. Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates[J]. Journal of Geophysical Research: Solid Earth, 115(B3): B03412.
|
[57] |
Han R, Hirose T, Shimamoto T, et al. 2011. Granular nanoparticles lubricate faults during seismic slip[J]. Geology, 39(6): 599—602.
|
[58] |
Han R, Hirose T, Jeong G Y, et al. 2014. Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications[J]. Geophysical Research Letters, 41(15): 5457—5466.
|
[59] |
Han R, Shimamoto T, Hirose T, et al. 2007. Ultralow friction of carbonate faults caused by thermal decomposition[J]. Science, 316(5826): 878—881.
PMID
|
[60] |
Hirauchi K, Hibi R, Shirahige R, et al. 2023. Effects of phyllosilicate content on the slip behavior of fault gouge: Insights from room-temperature friction experiments on quartz-talc mixtures[J]. Tectonophysics, 857:229845.
|
[61] |
Hirono T, Kaneki S, Ishikawa T, et al. 2020. Generation of sintered fault rock and its implications for earthquake energetics and fault healing[J]. Communications Earth and Environment, 1(1): 3.
|
[62] |
Hirose T, Shimamoto T. 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting[J]. Journal of Geophysical Research: Solid Earth, 110(B5): B05202.
|
[63] |
Holness M B. 1997. Geochemical self-organization of olivine-grade contact metamorphosed chert nodules in dolomite marble, Kilchrist, Skye[J]. Journal of Metamorphic Geology, 15(6): 765—775.
|
[64] |
Hou L, Ma S, Shimamoto T, et al. 2012. Internal structures and high-velocity frictional properties of a bedding-parallel carbonate fault at Xiaojiaqiao outcrop activated by the 2008 Wenchuan earthquake[J]. Earthquake Science, 25(3): 197—217.
|
[65] |
Hu W, Huang R Q, Mc Saveney M, et al. 2018. Mineral changes quantify frictional heating during a large low-friction landslide[J]. Geology, 46(3): 223—226.
|
[66] |
Hu W, Huang R Q, Mc Saveney M, et al. 2019. Superheated steam, hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide: Field and experimental evidence[J]. Earth and Planetary Science Letters, 510: 85—93.
|
[67] |
Huang J H, Zhang B, Hu W R, et al. 2024. Bonded nanoparticles restrengthen faults during earthquake slip[J]. Journal of Structural Geology, 186:105215.
|
[68] |
Ikari M J, Niemeijer A R, Spiers C J, et al. 2013. Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin[J]. Geology, 41(8): 891—894.
|
[69] |
Janssen C, Wirth R, Wenk H R, et al. 2014. Faulting processes in active faults: Evidences from TCDP and SAFOD drill core samples[J]. Journal of Structural Geology, 65: 100—116.
|
[70] |
Jung S, Kang J H, Kil Y, et al. 2023. Evidence of frictional melting in fault rock drill cuttings from the enhanced geothermal system site in Pohang, South Korea[J]. Tectonophysics, 862:229964.
|
[71] |
Kaneki S, Oohashi K, Hirono T, et al. 2020. Mechanical amorphization of synthetic fault gouges during rotary-shear friction experiments at subseismic to seismic slip velocities[J]. Journal of Geophysical Research: Solid Earth, 125(10): e2020JB019956.
|
[72] |
Khalaf F I, Thiry M, Milnes A, et al. 2020. Characterization of chert in the Dammam Formation(Eocene), Kuwait: Clues to groundwater silicification processes[J]. Journal of Sedimentary Research, 90(3): 297—312.
|
[73] |
Kirkpatrick J D, Edwards J H, Verdecchia A, et al. 2020. Subduction megathrust heterogeneity characterized from 3D seismic data[J]. Nature Geoscience, 13(5): 369—374.
|
[74] |
Kohli A H, Goldsby D L, Hirth G, et al. 2011. Flash weakening of serpentinite at near-seismic slip rates[J]. Journal of Geophysical Research: Solid Earth, 116(B3): B03202.
|
[75] |
Kuo L W, Song Y F, Yang C M, et al. 2015. Ultrafine spherical quartz formation during seismic fault slip: Natural and experimental evidence and its implications[J]. Tectonophysics, 664: 98—108.
|
[76] |
Kushnir A R L, Kennedy L A, Misra S, et al. 2015. The mechanical and microstructural behaviour of calcite-dolomite composites: An experimental investigation[J]. Journal of Structural Geology, 70: 200—216.
|
[77] |
Lachenbruch A H. 1980. Frictional heating, fluid pressure, and the resistance to fault motion[J]. Journal of Geophysical Research: Solid Earth, 85(B11): 6097—6112.
|
[78] |
Lin A M. 1994. Glassy pseudotachylyte veins from the Fuyun fault zone, northwest China[J]. Journal of Structural Geology, 16(1): 71—83.
|
[79] |
Logan J M, Rauenzahn K A. 1987. Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition and fabric[J]. Tectonophysics, 144(1-3): 87—108.
|
[80] |
Lu Z, He C R. 2018. Friction of foliated fault gouge with a biotite interlayer at hydrothermal conditions[J]. Tectonophysics, 740-741: 72—92.
|
[81] |
Ma S L, Shimamoto T, Yao L, et al. 2014. A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates[J]. Earthquake Science, 27(5): 469—497.
|
[82] |
Marone C, Scholz C H. 1988. The depth of seismic faulting and the upper transition from stable to unstable slip regimes[J]. Geophysical Research Letters, 15(6): 621—624.
|
[83] |
Miller S A, Collettini C, Chiaraluce L, et al. 2004. Aftershocks driven by a high-pressure CO2 source at depth[J]. Nature, 427(6976): 724—727.
|
[84] |
Mizoguchi K, Hirose T, Shimamoto T, et al. 2007. Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake[J]. Geophysical Research Letters, 34(1): L01308.
|
[85] |
Moore D E, Lockner D A. 2011. Frictional strengths of talc-serpentine and talc-quartz mixtures[J]. Journal of Geophysical Research: Solid Earth, 116(B1): B01403.
|
[86] |
Moore D E, Rymer M. 2007. Talc-bearing serpentinites and the creeping section of the San Andreas Fault[J]. Nature, 448(7155): 795—797.
|
[87] |
Muhuri S K, Dewers T A, Scott J T E, et al. 2003. Interseismic fault strengthening and earthquake-slip instability: Friction or cohesion?[J]. Geology, 31(10): 881—884.
|
[88] |
Nielsen S, Di Toro G, Hirose T, et al. 2008. Frictional melt and seismic slip[J]. Journal of Geophysical Research: Solid Earth, 113(B1): B01308.
|
[89] |
Niemeijer A R, Vissers R L M. 2014. Earthquake rupture propagation inferred from the spatial distribution of fault rock frictional properties[J]. Earth and Planetary Science Letters, 396: 154—164.
|
[90] |
Ohl M, Plümper O, Chatzaras V, et al. 2020. Mechanisms of fault mirror formation and fault healing in carbonate rocks[J]. Earth and Planetary Science Letters, 530:115886.
|
[91] |
Okamoto A S, Niemeijer A R, Takeshita T, et al. 2020. Frictional properties of actinolite-chlorite gouge at hydrothermal conditions[J]. Tectonophysics, 779:228377.
|
[92] |
Oohashi K, Hirose T, Shimamoto T. 2013. Graphite as a lubricating agent in fault zones: An insight from low-to high-velocity friction experiments on a mixed graphite-quartz gouge[J]. Journal of Geophysical Research: Solid Earth, 118(5): 2067—2084.
|
[93] |
Packard J J, Al-Aasm I, Samson I, et al. 2001. A devonian hydrothermal chert reservoir: The 225 bcf Parkland Field, British Columbia, Canada[J]. AAPG Bulletin, 85(1): 51—84.
|
[94] |
Pozzi G, De Paola N, Nielsen S B, et al. 2021. Coseismic fault lubrication by viscous deformation[J]. Nature Geoscience, 14(6): 437—442.
|
[95] |
Rattez H, Veveakis M. 2020. Weak phases production and heat generation control fault friction during seismic slip[J]. Nature Communications, 11(1): 350.
|
[96] |
Reches Z, Lockner D A. 2010. Fault weakening and earthquake instability by powder lubrication[J]. Nature, 467(7314): 452—455.
|
[97] |
Ren D S. 2024. Friction stabilities of gypsum and kaolinite/calcite mixture fault gauges under high pressure[J]. Frontiers in Earth Science, 11:1346880.
|
[98] |
Rice J R. 1993. Spatio-temporal complexity of slip on a fault[J]. Journal of Geophysical Research: Solid Earth, 98(B6): 9885—9907.
|
[99] |
Rice J R. 1999. Flash heating at asperity contacts and rate-dependent friction[C]. EOS, Transactions American Geophysical Union, 80(46): F471.
|
[100] |
Rice J R. 2006. Heating and weakening of faults during earthquake slip[J]. Journal of Geophysical Research: Solid Earth, 111(B5): B05311.
|
[101] |
Rice J R, Ruina A L. 1983. Stability of steady frictional slipping[J]. Journal of Applied Mechanics, 50(2): 343—349.
|
[102] |
Rubino V, Lapusta N, Rosakis J. 2022. Intermittent lab earthquakes in dynamically weakening fault gouge[J]. Nature, 606(7916): 922—929.
|
[103] |
Ruggieri R, Scuderi M M, Trippetta F, et al. 2021. The role of shale content and pore-water saturation on frictional properties of simulated carbonate faults[J]. Tectonophysics, 807:228811.
|
[104] |
Ruina A. 1983. Slip instability and state variable friction laws[J]. Journal of Geophysical Research: Solid Earth, 88(B12): 10359—10370.
|
[105] |
Samtani M, Dollimore D, Alexander K. 2001. Thermal decomposition of dolomite in an atmosphere of carbon dioxide: The effect of procedural variables in thermal analysis[J]. Journal of Thermal Analysis and Calorimetry, 65(1): 93—101.
|
[106] |
Sawai M, Shimamoto T, Togo T. 2012. Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes[J]. Journal of Structural Geology, 38: 117—138.
|
[107] |
Scholz C H. 2019. The Mechanics of Earthquakes and Faulting(3rd edition)[M]. Cambridge University Press, Cambridge: 1—487.
|
[108] |
Shimamoto T, Togo T. 2012. Earthquakes in the lab[J]. Science, 338(6103): 54—55.
|
[109] |
Siman-Tov S, Aharonov E, Sagy A, et al. 2013. Nanograins form carbonate fault mirrors[J]. Geology, 41(6): 703—706.
|
[110] |
Spagnuolo E, Nielsen S, Violay M, et al. 2016. An empirically based steady state friction law and implications for fault stability[J]. Geophysical Research Letters, 43(7): 3263—3271.
PMID
|
[111] |
Spagnuolo E, Plümper O, Violay M, et al. 2015. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes[J]. Scientific Reports, 5(1): 16112.
|
[112] |
Sun Y, Shu L S, Lu X C, et al. 2008. Recent progress in studies on the nano-sized particle layer in rock shear planes[J]. Progress in Natural Science, 18(4): 367—373.
|
[113] |
Sun H Y, Pec M. 2021. Nanometric flow and earthquake instability[J]. Nature Communications, 12(1): 6779—6787.
DOI
PMID
|
[114] |
Tanikawa W, Shimamoto T. 2009. Frictional and transport properties of the Chelungpu Fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake[J]. Journal of Geophysical Research: Solid Earth, 114(B1): B01402.
|
[115] |
Tesei T, Collettini C, Barchi M R, et al. 2014. Heterogeneous strength and fault zone complexity of carbonate-bearing thrusts with possible implications for seismicity[J]. Earth and Planetary Science Letters, 48: 307—318.
|
[116] |
Tisato N, Di Toro G, De Rossi N, et al. 2012. Experimental investigation of flash weakening in limestone[J]. Journal of Structural Geology, 38: 183—199.
|
[117] |
Torabi A, Berg S S. 2011. Scaling of fault attributes: A review[J]. Marine and Petroleum Geology, 28(8): 1444—1460.
|
[118] |
Trouw R A J, Passchier C W, Wiersma D J. 2010. Atlas of Mylonites and Related Microstructures[M]. Springer Verlag, Berlin: 322.
|
[119] |
Tsutsumi A, Shimamoto T. 1996. Frictional properties of monzodiorite and gabbro during seismogenic fault motion[J]. Journal of Geological Society of Japan, 102(3): 240—248.
|
[120] |
Tsutsumi A, Shimamoto T. 1997. High-velocity frictional properties of gabbro[J]. Geophysical Research Letters, 24(6): 699—702.
|
[121] |
Tullis T E. 2015. Mechanisms for Friction of Rock at Earthquake Slip Rates[A]. In: In: Schubert G(Ed.), Treatise on Geophysics, Second Edition, Elsevier, Oxford: 139—159.
|
[122] |
Wang H, Li H B, Di Toro G, et al. 2023. Melting of fault gouge at shallow depth during the 2008 MW9 Wenchuan earthquake, China[J]. Geology, 51(4): 345—350.
|
[123] |
Weeks J D, Tullis T E. 1985. Frictional sliding of dolomite: A variation in constitutive behavior[J]. Journal of Geophysical Research: Solid Earth, 90(B9): 7821—7826.
|
[124] |
Wen H J, Fan H F, Tian S H, et al. 2016. The formation conditions of the early Ediacaran cherts, South China[J]. Chemical Geology, 430: 45—69.
|
[125] |
Yao L, Ma S L, Chen J Y, et al. 2018. Flash heating and local fluid pressurization lead to rapid weakening in water-saturated fault gouges[J]. Journal of Geophysical Research: Solid Earth, 123(10): 9084—9100.
|
[126] |
Yao L, Ma S L, Niemeijer A R, et al. 2016a. Is frictional heating needed to cause dramatic weakening of nanoparticle gouge during seismic slip?Insights from friction experiments with variable thermal evolutions[J]. Geophysical Research Letters, 43(13): 6852—6860.
|
[127] |
Yao L, Ma S L, Platt J D, et al. 2016b. The crucial role of temperature in high-velocity weakening of faults: Experiments on gouge using host blocks with different thermal conductivities[J]. Geology, 44(1): 63—66.
|
[128] |
Yao L, Ma S L, Shimamoto T, et al. 2013a. Structures and high-velocity frictional properties of the Pingxi fault zone in the Longmenshan fault system, Sichuan, China, activated during the 2008 Wenchuan earthquake[J]. Tectonophysics, 599: 135—156.
|
[129] |
Yao L, Shimamoto T, Ma S L, et al. 2013b. Rapid post-seismic strength recovery of Pingxi fault gouge from the Longmenshan fault system: Experiments and implications for the mechanisms of high-velocity weakening of faults[J]. Journal of Geophysical Research: Solid Earth, 118(8): 4547—4563.
|