Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
GEOLOGICAL DISASTERS AND SURFACE RUPTURES OF JANUARY 23, 2024 MS7.1 WUSHI EARTHQUAKE, XINJIANG, CHINA
ZHANG Bo-xuan, QIAN Li, LI Tao, CHEN Jie, XU Jian-hong, YAO Yuan, FANG Li-hua, XIE Chao, CHEN Jian-bo, LIU Guan-shen, HU Zong-kai, YANG Wen-xin, ZHANG Jun-long, PANG Wei
SEISMOLOGY AND GEOLOGY    2024, 46 (1): 220-234.   DOI: 10.3969/j.issn.0253-4967.2024.01.013
Abstract1292)   HTML76)    PDF(pc) (14676KB)(810)       Save

The MS7.1 earthquake in Wushi, Xinjiang on January 23, 2024, represents the largest earthquake in the Tianshan seismic belt since the 1992 Suusamyr MS7.3 earthquake in Kyrgyzstan. Preliminary precise aftershock localization and initial field investigations indicate an NE-trending aftershock zone with a length of 62km that is concentrated at the mountain-basin transition area. This event produced geological hazards, including slope instability, rockfalls, rolling stones, and ground fissures, primarily within a 30-kilometer radius around the epicenter. The epicenter, located approximately 7 kilometers north of the precise positioning in this study, witnessed a rapid decrease in geological hazards such as collapses, with no discernible fresh activity observed on the steep fault scarp along the mountainfront. Consequently, it is inferred that the causative fault for this main shock may be an NW-dipping reverse fault, with potential rupture not reaching the surface.

Moreover, a surface rupture zone with a general trend of N60°E, extending approximately 2 kilometers, and displaying a maximum vertical offset of 1m, was identified on the western side of the micro-epicenter at the Qialemati River. This rupture zone predominantly follows the pre-existing fault scarp on higher geomorphic surfaces, indicating that it is not new. Its characteristics are mainly controlled by a southeast-dipping reverse fault, opposite in dip to the causative fault of the main shock. The scale of this 2-kilometer-long surface rupture zone is notably smaller than the aftershock zone of the Wushi MS7.1 earthquake. Further investigation is warranted to elucidate whether or not the MS5.7 aftershock and the relationship between the SE-dipping reverse fault responsible for the surface rupture and the NW-dipping causative fault of the main shock produced it.

Table and Figures | Reference | Related Articles | Metrics
EVIDENCE OF LATE QUATERNARY TECTONIC ACTIVITY OF THE BEIDA SHAN FAULT, SOUTHERN MARGIN OF THE ALASHAN BLOCK
ZUO Yu-qi, YANG Hai-bo, YANG Xiao-ping, ZHAN Yan, LI An, SUN Xiang-yu, HU Zong-kai
SEISMOLOGY AND GEOLOGY    2023, 45 (2): 355-376.   DOI: 10.3969/j.issn.0253-4967.2023.02.004
Abstract397)   HTML41)    PDF(pc) (27392KB)(241)       Save

The southern Alashan block is located at the crustal front of the northern Tibetan plateau. It was initially considered as a relatively stable area with weak tectonic activity. In recent years, an increasing number of studies have shown that the Alashan block has undergone significant tectonic deformation since the Cenozoic. Multiple active faults with a horse-tail distribution are developed in the southern margin of the Alashan block. However, there is still controversy over the tectonic deformation patterns of these active faults. One view is that the fault system in the southern margin of Alashan is the result of the eastward extension of the Altyn Tagh Fault and belongs to the tail structure of the strike-slip fault. Another view is that the fault system in the southern Alashan block is the result of the revival of the pre-existing fault caused by the northward compression and thrust of the Tibetan plateau. Therefore, deciphering fault’s kinematics and slip rates since the late Quaternary in the southern Alashan block is crucial to understand the tectonic deformation pattern of the block and its response to Tibet’s northward growth. In this paper, combined with interpretations of remote sensing images and field investigations, we documented the Quaternary activity of the Beida Shan Fault, one of the major faults in the southern Alashan block, along the segment developed in Quaternary alluvium.

The Beida Shan Fault is a sinistral strike-slip fault with paralleled north and south branches that displaced the late Quaternary alluvial fans and terraces, forming offset gullies and fault scarps. According to the geometric distribution characteristics, activity and the landforms along the fault, we divided the fault into three segments: the Langwa Shan segment, the northern branch of the Jiapiquan Shan segment, and the southern branch of the Jiapiquan Shan segment. The fault is east-west trending, and the offset geomorphic features along the fault reveal that there are differences in the activity of different segments. The Langwa Shan segment is 10km long and developed at the junction of bedrock and alluvial fan. The fault trace is straight, and a series of gullies and ridges offset by the fault indicate that it is a sinistral strike-slip fault. The Jiapiquan Shan segment is 35km long and divided into two parallel north and south branches with a spacing of about 1.5km. The north branch fault strikes NE on the east side of Langwa Shan and has an angle of about 30° with the south branch fault. After extending about 2km to the northeast direction and entering the north side of Dahong Shan, the fault turns to the EW direction and is parallel to the south branch fault. It is distributed along the boundary between the bedrock and the alluvial fan with the south or north fault scarps and the secondary branch faults. To the east, the north branch fault is developed in bedrock, which is mainly characterized by offset gullies and ridges. The southern branch fault offset multi-stage alluvial fan, forming fault scarps of different heights and left-lateral offset gullies of different scales, and the exposed fault profiles show high angle reverse faults, which dip south or north, indicating that this segment is sinistral strike-slip.

Based on the 1.5m resolution DEM data obtained from UAV-SfM, we measured the horizontal displacement of fault landforms using the LaDiCaoZ software developed by Zielke et al.(2012) on the MATLAB platform. Combined with field survey data, we obtained the left-lateral horizontal displacements of 70 sites along the Beida Shan Fault. The sinistral offset of~1m is not included in slip distribution statistics due to limitations of the quantity and data accuracy. Statistical analysis of the displacements reveals that the left-lateral displacements along the fault are concentrated between 3m to 20m, with the majority in two pronounced peaks at 5.3m and 10.1m. The 5.3m peak contains the most data points, with 17 displacements data, accounting for 24% of the total, while the 10.1m peak contains 6 data points, accounting for 9% of the total. This indicates that the Beida Shan Fault has experienced multiple seismic events involving the displacement and rupture of stratigraphic layers on the surface.

An~8km-long surface rupture is discovered on the south fault branch, and it is represented by of fault scarps and of tens of centimeters 1~2m left-lateral displacement of small gullies. Fresh surface rupture and left-lateral offset gullies indicate the latest fault activity. Using the previously dated alluvial fan ages in Taohuala Shan, ~30km south of the Beida Shan, we calculated the late Pleistocene sinistral slip rate of 0.3~0.6mm/a along the Beida Shan Fault, which is consistent with the slip rate of the Taohuala Shan Fault estimated by Yu et al.(2017). Compared with the fault slip rate accommodated in the Hexi Corridor area and regional GPS rates, the southern Alashan block plays a significant role in absorbing deformation in response to the northern Tibetan growth.

Table and Figures | Reference | Related Articles | Metrics
GEOLOGICAL DEFORMATION OF THE TUOLI FAULT IN THE WEST JUNGGAR SINCE THE LATE QUATERNARY
YUAN Hao-dong, LI An, HUANG Wei-liang, HU Zong-kai, ZUO Yu-qi, YANG Xiao-ping
SEISMOLOGY AND GEOLOGY    2023, 45 (1): 49-66.   DOI: 10.3969/j.issn.0253-4967.2023.01.003
Abstract328)   HTML56)    PDF(pc) (11448KB)(207)       Save

In the Cenozoic, under the influence of the collision of the India-Eurasia plate and the northward pushing after that, deformation occurred in the interior of the continent, and the crustal deformation is mainly absorbed by the thickening of the crust and the strike-slip movement of the fault. The GPS velocity field shows that the area north of Tianshan absorbs the shortening with a rate of~2mm/a. How the shortening with these rates is absorbed is a topic worthy of study. The West Junggar, located to the north of the Tianshan Mountains and developed with the inclined parallel strike-slip fault system is an important area of crustal shortening. The inclined parallel strike-slip fault system includes the east Tacheng Fault, Tuoli Fault and Daerbute Fault. Hence, the structural deformation of the Tuoli Fault in the late Quaternary is significant for understanding the structural deformation and crustal shortening absorption mode in the north of Tianshan Mountains.

In this study, two branches were found extending along the Tuoli Fault in the direction of NE based on remote sensing image interpretation. Field investigation to the two branch faults shows that many marker landforms were dislocated in the study area, including gullies and terrace riser. The two faults cross through the terraces developed in the Kapusheke River and the Tiesibahan River in this area, forming offset terrace riser. Because the terrace riser is in the retained bank of the river, the upper-layer terrace model is used to calculate the fault’s slip rate. The gullies are mainly distributed on the T3 terrace of the Kapushek River on the west branch fault. The horizontal dislocation of these gullies ranges from 10m to 37.5m, and the largest horizontal dislocation is located in the No. 8 gully, which is (37.5-4.1/+2.7)m. Since the actual value of the fault movement rate must be greater than the rate obtained by the sub-gully offset, we choose the maximum offset of the gully on the landform surface in calculating the slip rate. We used OSL(Optical Stimulated Luminescence)to date the age of the landform and used UAV(Unmanned Aerial Vehicle)photogrammetry technology to extract high-precision DEM of the study area. Then, we calculate the movement rate of the Tuoli Fault since the late Quaternary from the dislocations and the age of landmark landforms such as gullies and terraces. The results show that the Tuoli Fault comprises two branch faults in the east and the west, both of which are left-lateral horizontal strike-slip. The east branch fault produced a (89±31)m and (39±13)m horizontal dislocation on the T3 and T2 terrace of the Kapusheke River, respectively. Combined with the (52.9±5.1)ka of the T3 terrace age and (23.4±1.5)ka of the T2 terrace age, the horizontal slip-rate of (1.7±0.8)mm/a is calculated for the eastern branch fault. The western branch fault produced a horizontal dislocation of (34.0±6.8)m on the T2 terrace of the Tiesibahan River and 37.5(-4.1/+4.1)m of the gully on the T3 terrace of the Kapusheke River. Combined with (18.8±1.3)ka of the T2 terrace age, we obtained a sinistral slip rate of 1.8(+0.5/-1.3)mm/a for the western branch fault. The sinistral slip rate of two branch faults of the Tuoli Fault is similar to the sinistral slip rate of the east Tacheng Fault in the previous research results. This study result indicates that these parallel left-lateral strike-slip faults in the West Junggar area conform to the characteristics of the bookshelf faults structural model, and most of the compression shortening in the West Junggar area is absorbed by the parallel strike-slip movement of the fault system. So this fault system has played an important role in controlling the NS shortening of the crust in this region.

Table and Figures | Reference | Related Articles | Metrics
GEOMORPHIC ANALYSIS OF STRIKE-SLIP FAULTING AT THE TOP OF ALLUVIAL FAN: A CASE STUDY AT AHEBIEDOU RIVER ON THE EASTERN MARGIN OF TACHENG BASIN, XINJIANG, CHINA
MIAO Shu-qing, HU Zong-kai, ZHANG Ling, YANG Hai-bo, YANG Xiao-ping
SEISMOLOGY AND GEOLOGY    2021, 43 (3): 488-503.   DOI: 10.3969/j.issn.0253-4967.2021.03.002
Abstract1312)   HTML    PDF(pc) (11430KB)(357)       Save
The top of the piedmont alluvial fan has the characteristic of fan-shaped terrain and gradually descending terrain in the downstream direction. Faulting of various natures will result in different geomorphic features of alluvial fan surface. The variation of slope aspect and height of the pure sinistral fault scarp at the top of the alluvial fan is analyzed firstly under the three conditions, namely, the fault plane is vertical, the fault plane inclines toward the upper stream of the river, and the fault plane inclines toward the downstream of the river. We have also analyzed the variation of slope aspect and height of the fault scarps at the top of the alluvial fan under different fault inclination conditions of inverse sinistral strike-slip fault and the sinistral strike-slip normal fault. The seven geomorphic types we analyzed above cover the geomorphic features caused by the activity of strike-slip faults at the top of alluvial fans, which can help us to analyze the formation of the landforms. Based on drone-measured terrain data, Google satellite images and field investigations, we found that the Dongbielieke Fault, which strikes northeast-southwest and is located in the eastern margin of the Tacheng Basin, Xinjiang, almost vertically passes through the Ahebeidou River which develops from southeast to northwest. The direction of central axis of the alluvial fan at Ahebedou River is northwest, with a north-facing slope. The fault activity has caused the development of an uphill-facing scarp that has a height of~5.2m and a slope aspect facing southeast on the top of the alluvial fan at the Ahebiedou River section of the Dongbielieke Fault. And on the piedmont alluvial fan 1km away on both sides of the river bed, the sinistral fault scarps have a northwest-facing slope aspect and a height of 1~5m. The river terraces are divided into five levels, the T2 on the left bank, T4 on the right bank and T5 terraces on the left and right banks of Ahebeidou River were affected by fault activity. Sinistral offsets and southeast-facing fault scarps were developed on the geomorphic surface. By using DispCalc_Bathy_v2, a script based on Matlab, we get the offsets of the river terraces from the high-resolution DEM data obtained by using UAV photogrammetry technology. The sinistral horizontal offsets of T2 on the left bank, T4 on the right bank and T5 terraces on the left and right banks of Ahebeidou River are(10.1±0.2)m, (10.6±0.7)m, (29.1±0.2)m and(20.0±0.7)m, respectively. The vertical displacements are(1.5±0.1)m, (3.6±0.3)m, (4.7±0.2)m and(5.2±0.1)m, respectively. The asymmetrical development of terrains on both sides of the river is affected by topography and fault activity. The terraces on the lower elevation right bank of the river are misplaced into the channel by sinistral strike-slip faulting to receive more erosion, so the offsets we measured on the left bank of the river are more reliable than that on the right bank. Through field surveys, we found two fault outcrops, indicating that the fault plane is inclined to the southeast. The young river terrace T2 was effected by faulting and a uphill-facing scarp was developed, which indicates that the latest faulting was of sinistral strike-slip with a normal component, but the fault scarp's aspect changed twice within a short area of two kilometers, which is not consistent with the geomorphological type caused by the strike-slip faulting on the top of the alluvial fan as we previously analyzed. According to the landform features and the strike-slip fault geomorphic model, a model for the geomorphic surface development of the Ahebiedou River section is established. In this model, we think the Dongbielieke Fault was an inverse sinistral strike-slip fault after the formation of an older phase geomorphic surface S1 in the area. The early fault activity formed a northwest-facing fault scarp at S1, the height of the scarp is about 10m. Then the alluvial fan(Fan1)began to develop, and the material brought by the flowing water deposited and buried the fault scarp at the exit of piedmont, resulting in the disappearance of the existing fault scarp in the piedmont. Then the characteristic of fault changed into left-lateral strike-slip with a normal component. The activity of normal fault with the fault plane dipping to SE would form a fault scarp facing SE on the geomorphic surface. With the gradually cutting of the river, river terraces began to form on both sides of the river, and the corresponding geomorphic features were formed under the influence of fault activities. A fault scarp with a slope facing southeast formed at both banks of the river's mountain outlet with a height of about 5.2m through several fault activities, and sinistral horizontal offsets of river terraces increased at the same time. And the height of the pre-existing northwest-facing scarp 1~2km away from both banks of the river's mountain outlet decreased to about 5m, which can be observed in the field. The eventual geomorphic surface is characterized by the features of downhill-facing scarp-no scarp-uphill-facing scarp-no scarp-downhill-facing scarp from southeast to northeast.
Reference | Related Articles | Metrics
STUDY ON PALEOEARTHQUAKES ALONG THE JINGHE SECTION OF BOLOKENU-AQIKEKUDUKE FAULT
HU Zong-kai, YANG Xiao-ping, YANG Hai-bo, WU Guo-dong, LI Jun, ZHOU Ben-gang
SEISMOLOGY AND GEOLOGY    2020, 42 (4): 773-790.   DOI: 10.3969/j.issn.0253-4967.2020.04.001
Abstract1008)   HTML    PDF(pc) (9413KB)(243)       Save
The Bolokenu-Aqikekuduk fault zone(B-A Fault)is a 1 000km long right-lateral strike-slip active fault in the Tianshan Mountains. Its late Quaternary activity characteristics are helpful to understand the role of active strike-slip faults in regional compressional strain distribution and orogenic processes in the continental compression environment, as well as seismic hazard assessment. In this paper, research on the paleoearthquakes is carried out by remote sensing image interpretation, field investigation, trench excavation and Quaternary dating in the Jinghe section of B-A Fault. In this paper, two trenches were excavated on in the pluvial fans of Fan2b in the bulge and Fan3a in the fault scarp. The markers such as different strata, cracks and colluvial wedges in the trenches are identified and the age of sedimentation is determined by means of OSL dating for different strata. Four most recent paleoearthquakes on the B-A Fault are revealed in trench TC1 and three most recent paleoearthquakes are revealed in trench TC2. Only the latest event was constrained by the OSL age among the three events revealed in the trench TC2. Therefore, when establishing the recurrence of the paleoearthquakes, we mainly rely on the paleoearthquake events in trench TC1, which are labeled E1-E4 from oldest to youngest, and their dates are constrained to the following time ranges: E1(19.4±2.5)~(19.0±2.5)ka BP, E2(18.6±1.4)~(17.3±1.4)ka BP, E3(12.2±1.2)~(6.6±0.8)ka BP, and E4 6.9~6.2ka BP, respectively. The earthquake recurrence intervals are(1.2±0.5)ka, (8.7±3.0)ka and(2.8±3)ka, respectively. According to the sedimentation rate of the stratum, it can be judged that there is a sedimentary discontinuity between the paleoearthquakes E2 and E3, and the paleoearthquake events between E2 and E3 may not be recorded by the stratum. Ignoring the sedimentary discontinuous strata and the earthquakes occurring during the sedimentary discontinuity, the earthquake recurrence interval of the Jinghe section of B-A Fault is ~1~3ka. This is consistent with the earthquake recurrence interval(~2ka)calculated from the slip rate and the minimum displacement. The elapsed time of the latest paleoearthquake recorded in the trench is ~6.9~6.2ka BP. The magnitude of the latest event defined by the single event displacement on the fault is ~MW7.4, and a longer earthquake elapsed time indicates the higher seismic risk of the B-A Fault.
Reference | Related Articles | Metrics
FAULTED LANDFORM AND SLIP RATE OF THE JINGHE SECTION OF THE BOLOKENU-AQIKEKUDUKE FAULT SINCE THE LATE PLEISTOCENE
HU Zong-kai, YANG Xiao-ping, YANG Hai-bo, LI Jun, WU Guo-dong, HUANG Wei-liang
SEISMOLOGY AND GEOLOGY    2019, 41 (2): 266-280.   DOI: 10.3969/j.issn.0253-4967.2019.02.002
Abstract741)   HTML    PDF(pc) (13132KB)(505)       Save
The Bolokonu-Aqikekuduke fault zone(Bo-A Fault)is the plate convergence boundary between the middle and the northern Tianshan. Bo-A Fault is an inherited right-lateral strike-slip active fault and obliquely cuts the Tianshan Mountains to the northwest. Accurately constrained fault activity and slip rate is crucial for understanding the tectonic deformation mechanism, strain rate distribution and regional seismic hazard. Based on the interpretation of satellite remote sensing images and topographic surveys, this paper divides the alluvial fans in the southeast of Jinghe River into four phases, Fan1, Fan2, Fan3 and Fan4 by geomorphological elevation, water density, depth of cut, etc. This paper interprets gullies and terrace scarps by high-resolution LiDAR topographic data. Right-laterally offset gullies, fault scarps and terrace scarps are distributed in Fan1, Fan2b and Fan3. We have identified a total of 30 right-laterally offset gullies and terrace scarps. Minimum right-lateral displacement is about 6m and the maximum right-lateral displacements are(414±10)m, (91±5)m and(39±1)m on Fan2b, Fan3a and Fan3b. The landform scarp dividing Fan2b and Fan3a is offset right-laterally by (212±11)m. Combining the work done by the predecessors in the northern foothills of the Tianshan Mountains with Guliya ice core climate curve, this paper concludes that the undercut age of alluvial fan are 56~64ka, 35~41ka, 10~14ka in the Tianshan Mountains. The slip rate of Bo-A Fault since the formation of the Fan2b, Fan3a and Fan3b of the alluvial-proluvial fan is 3.3~3.7mm/a, 2.2~2.6mm/a and 2.7~3.9mm/a. The right-lateral strike-slip rate since the late Pleistocene is obtained to be 3.1±0.3mm/a based on high-resolution LiDAR topographic data and Monte Carlo analysis.
Reference | Related Articles | Metrics
LATE QUATERNARY TECTONIC DEFORMATION AROUND THE HUJIATAI ANTICLINE ALONG THE EAST SEGMENT OF THE FODONGMIAO-HONGYAZI FAULT, NORTHERN QILIAN SHAN: AN INSIGHT ON THE SEISMOGENIC PATTERN OF 1609 HONGYAZI M7 1/4 EARTHQUAKE
YANG Hai-bo, YANG Xiao-ping, HUANG Xiong-nan, HU Zong-kai
SEISMOLOGY AND GEOLOGY    2018, 40 (5): 980-998.   DOI: 10.3969/j.issn.0253-4967.2018.05.003
Abstract751)   HTML    PDF(pc) (15853KB)(201)       Save
The Fodongmiao-Hongyazi Fault (FHF)is one of the most active faults of the northern Qilian thrust fault zone. The 1609 Hongyazi M7 1/4 earthquake occurred on the east segment of the FHF, an area with a complex geometry at the Mayinghe River site. The seismogenic pattern of this earthquake revealed by complex surface ruptures remains unclear. In this paper, we focus on active tectonic deformation around the Hujiatai anticline (HA)in the Mayinghe River site. Combining with topographic survey via dGPS across deformed terraces and alluvial fans, a field survey of the geological section across the HA, the characteristics of the active fold and several sub-faults were constrained. Meanwhile, combined with the seismic reflection profiles passing through the anticline, the correspondence relationship between surface expressions of this tectonic and the deep structure was discussed. According to our research, the HA is a result of northward propagation of the range-front thrust fault F1. At the same time, a thrust fault F2 with dextral strike-slip motion and a thrust fault F4 were formed on the east side and north side of the HA, respectively. These two active faults accommodated local deformation. Trench results and 14C dating reveal that the 1609 Hongyazi M7 1/4 earthquake ruptured the T1 terrace in the Huangcaoba site. Combined with previous field investigations and literature about the 1609 Hongyazi earthquake, we suggest that this earthquake occurred on the range-front fault F1, and the depth of the hypocenter may be about 8~22km.
Reference | Related Articles | Metrics