Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
NEW ACTIVITY CHARACTERISTICS IN THE CHISHAN SECTION OF TAN-LU FAULT ZONE IN HOLOCENE
ZHENG Hai-gang, YAO Da-quan, ZHAO Peng, YANG Yuan-yuan, HUANG Jin-shui
SEISMOLOGY AND GEOLOGY    2023, 45 (1): 127-138.   DOI: 10.3969/j.issn.0253-4967.2023.01.007
Abstract441)   HTML33)    PDF(pc) (10175KB)(215)       Save

The Chishan section of Tan-Lu fault zone is located in Sixian County, northern Anhui Province. Research on the characteristics of Quaternary fault activity of this section began in the 1990s, which includes microgeomorphology survey, trench excavation, dating sample collection and measurement, and so on. Through these studies, many valuable data and results were accumulated, which laid a good foundation for the current research. Based on the field geological survey and previous studies, two geological trenches were excavated, which are named trench XJ1 and XJ2 respectively. Among them, very rich remains of ancient earthquakes were found in trench XJ1 and analyzed as major contents in this paper, and few relics of ancient earthquake were found in trench XJ2, which are not involved in this paper.

In the trench XJ1, ten strata units were revealed, labeled as U1 to U10 from old to young, respectively. Layer U1 is the Cretaceous sandstone with a thickness about 0.5~1.0m, lying on the bottom of the west wall of the trench. Layer U2 is yellowish brown clay with a thickness of 1~2.5m, located at the bottom of the eastern side of trench profile. One OSL sample is collected in the middle of this layer with an age more than 150k a BP, which indicates the layer was deposited before the Mid Pleistocene. Layer U3 is purple clay-sand, which is wide at the bottom around 6.5m and narrow at the top around 2.5m, and the top extends about 7m continuously from west to east. Layer U4 is motley gravel with a thickness about 2.0~2.5m, which is below layer U9 and above layer U4 on the west side of the trench wall. Layer U5 is gravel containing a lot of clay and a few of sandstone clumps, wide at the top about 3m and narrow at the bottom about 2m. Layer U6 is light green gravel containing some sand and clay, thick in the west about 0.8m and thin in the east about 0.2m, extending around 7m discontinuously from west to east. Layer U7 is grayish white gravel with sand and clay, thick in the west around 1.0m and thin in the east around 0.2m, extending about 5m continuously from west to east. Layer U8 is yellow clay with a thickness of 0.5~2.0m, located below layer U9 and above U7. One peat sample was taken from the top of the layer and the age of this sample is 21.57~21.22k a BP measured by Beta Analytic Inc in the United States, which indicates this layer was deposited in Late Epipleistocene. Layer U9 is black clay with a thickness of 0.5~1.5m, which is located above Layer U4, U5, U7 and U8 and is the latest disturbed layer in the trench. One peat sample was taken from the bottom of this layer and the age of this sample is 11.10~10.75k a BP measured by Beta Analytic Inc in the United States, which indicates this layer was deposited in the early Holocene. Layer U10 is the cultivation layer with a thickness of 0.2~0.5m, located on the topmost of the trench wall.

Three faults were revealed in these layers, named as F1 and F2 and F3 respectively from east to west. Three paleoseismic events were identified, which are labeled as E1 and E2 and E3 respectively from old to new. The E1 represents a thrust activity of fault F1. After the deposition of layers U5, U3 and U2 finished, the hanging wall U5 of fault F1 thrust upward above the footwall U8, and the soft layer U3 in between was squeezed and rubbed upward, forming lenticles in the layer, which indicates the movement direction of the hanging wall of F1 is thrust upward. A compressional overfall scarp was formed by this event, then the layer U6 was deposited on the east side of the scarp, whose age is not measured. But the dating of layer U2 beneath the fault F1 yields an age before Mid Pleistocene, which constrains the lower limit age of E1 to be after Mid Pleistocene. The E2 represents a thrust faulting of fault F2. After the deposition of layer U6, a new thrust faulting occurred on fault F2, which cut through layer U5 and formed a thrust fault scarp. Later, U7 and U8 were deposited on the east of the scarp. The layer U7 is gravel, whose age is not measured, but the layer U8 is dated as the Late Epipleistocene, which constrains the upper limit age of events E1 and E2 to be after Late Epipleistocene. The E3 represents a strike-slip normal faulting of Fault F3, which faulted the layer U3. According to the age of the layer U3, we can constrain the lower limit age of E3 to be the Early Holocene, which indicates that the Chishan section of the Tan-Lu fault zone is still active after the Early Holocene.

To sum up, two geological trenches were excavated at the Chishan section of Tan-Lu fault zone, named as trench XJ1 and XJ2 respectively, and three main faults were revealed on the wall of trench XJ1, named as F1, F2 and F3 from east to west, and three paleoseismic events were identified, which are labeled as E1 and E2 and E3 respectively from old to new. The latest ancient seismic event faulted the Early Holocene layer, indicating the Chishan section of the Tan-Lu fault zone is still active after the Late Holocene, and the latest activity is of strike-slip normal faulting, which provides new evidence for the presence of Holocene activity of this fault section and new information for long-term seismic risk assessment in this area.

Table and Figures | Reference | Related Articles | Metrics
SIMULATION OF POST-SEISMIC EFFECTS OF THE MADUO MS7.4 EARTHQUAKE IN 2021
TAN Hong-bo, WANG Jia-pei, YANG Guang-liang, CHEN Zheng-song, WU Gui-ju, SHEN Chong-yang, HUANG Jin-shui
SEISMOLOGY AND EGOLOGY    2021, 43 (4): 936-957.   DOI: 10.3969/j.issn.0253-4967.2021.04.013
Abstract569)   HTML26)    PDF(pc) (16933KB)(370)       Save

Using the fault model issued by the USGS, and based on the dislocation theory and local crust-upper-mantle model layered by average wave velocity, the co-seismic and post-seismic deformation and gravity change caused by the 2021 Maduo MS7.4 earthquake in an elastic-viscoelastic layered half space are simulated. The simulation results indicate that: the co-seismic deformation and gravity change show that the earthquake fault is characterized by left-lateral strike-slip with normal faulting. The changes are concentrated mainly in 50km around the projection area of the fault on the surface and rapidly attenuate to both sides of the fault, with the largest deformation over 1 000mm on horizontal displacement, 750mm on the vertical displacement, and 150μGal on gravity change. The horizontal displacement in the far field(beyond 150km from the fault)is generally less than 10mm, and attenuates outward slowly. The vertical displacement and gravity change patterns show a certain negative correlation with a butterfly-shaped positive and negative symmetrical four-quadrant distribution. Their attenuation rate is obviously larger than the horizontal displacement, and the value is generally less than 2mm and 1 micro-gal. The post-seismic effects emerge gradually and increase continuously with time, similar to the coseismic effects and showing an increasing trend of inheritance obviously. The post-seismic viscoelastic relaxation effects can influence a much larger area than the co-seismic effect, and the effects during the 400 years after the earthquake in the near-field area will be less than twice of the co-seismic effects, but in the far-field it is more than 3 times. The viscoelastic relaxation effects on the horizontal displacement, vertical displacement and gravity change can reach to 100mm, 130mm and 30 micro-gal, respectively. The co-seismic extremum is mainly concentrated on both sides of the fault, while the post-earthquake viscoelastic relaxation effects are 50km from the fault, the two effects do not coincide with each other. The post-seismic horizontal displacement keeps increasing or decreasing with time, while the vertical displacement and gravity changes are relatively complex, which show an inherited increase relative to the co-seismic effects in the near-field within 5 years after the earthquake, then followed by reverse-trend adjustment, while in the far-field, they are just the opposite, with reverse-trend adjustment first, and then the inherited increase. The horizontal displacement will almost be stable after 100 years, while the viscoelastic effects on the vertical displacement and gravity changes will continue to 300 years after the earthquake. Compared with the GNSS observation results, we can find that the observed and simulated results are basically consistent in vector direction and magnitude, and the consistency is better in the far-field, which may be related to the low resolution of the fault model. The simulation results in this paper can provide a theoretical basis for explaining the seismogenic process of this earthquake using GNSS and gravity data.

Table and Figures | Reference | Related Articles | Metrics
SIMULTANEOUS INVERSION OF EARTHQUAKE HYPOCENTERS AND VELOCITY STRUCTURE IN ZIPINGPU RESERVOIR AREA
WANG Liang, ZHOU Long-quan, HUANG Jin-shui, JIAO Ming-ruo, LIANG Yi-jing, YANG Mu-ping
SEISMOLOGY AND GEOLOGY    2015, 37 (3): 748-764.   DOI: 10.3969/j.issn.0253-4967.2015.03.007
Abstract603)      PDF(pc) (8970KB)(532)       Save

In this study, using the earthquake observation reports recorded by 7 local earthquake stations in Zipingpu reservoir area and 10 regional seismic stations during the period from August 2004 to May 2008, and with the method of simultaneous inversion of earthquake hypocenters and velocity structure, we invert the velocity structure and conduct the relocation of small earthquakes in the Zipingpu area using the software Simulps14.
Nodes method is used in model parameterization and ART-PB is used in forward calculation. Damped least square method is used in inversion. Regarding the evaluation of solutions, the RDE and DWS are both given in this study.
By calculating, we determined the precise locations of almost all earthquakes in Zipingpu area and the distributions of P wave velocity and VP/VS ratio on layers 0km, 3km, 6km and 10km. The relocations of earthquakes show that the seismicity mainly concentrates in the three areas of Hongkou, Yutang town and Shuimo.Tomographic imaging result of P wave velocity structure and wave velocity ratio elaborated the effect of reservoir seepage on Wenchuan MS8.0 earthquake. We find the effect of reservoir seepage in the southwest of Zipingpu reservoir, which is closest to the epicenter of Wenchuan earthquake, is not more than 8km in depth, and there is no obvious low velocity anomaly at the depth of the Wenchuan main shock, nor obvious high value anomaly of VP/VS ratio. This means penetration of water didn't reach the depth of Wenchuan main shock, that is, water was not the direct factor causing the Wenchuan earthquake.

Reference | Related Articles | Metrics