Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
GEOMETRIC STRUCTURE CHARACTERISTICS OF XINYI SEGMENT OF ANQIU-JUXIAN FAULT
ZHANG Hao, WANG Jin-yan, XU Han-gang, LI Li-mei, JIANG Xin, ZHAO Qi-guang, GU Qin-ping
SEISMOLOGY AND GEOLOGY    2022, 44 (6): 1448-1468.   DOI: 10.3969/j.issn.0253-4967.2022.06.006
Abstract682)   HTML44)    PDF(pc) (16789KB)(223)       Save

The Tanlu fault zone is the most active fault zone in eastern China. It has been active mainly along the Anqiu-Juxian Fault(AJF)since the Quaternary. Predecessors have done a lot of research on the age, paleoearthquake and geometry structure of the AJF, but most of them focus on the exposed area of the fault, and relatively few studies on the buried section. Using field geological survey, shallow seismic exploration, drilling, and paleoearthquake trench, this paper focuses on the geometry structure of the Xinyi section(the buried section)of the AJF, and analyzes its geometry distribution characteristics in the plane and the structural relationship between the deep and the shallow parts, thus filling the gap of the activity characteristics of the Xinyi section of the AJF. The results show that the Xinyi section of the AJF can be divided into three sections from north to south: the Beimalingshan-Guanzhuang section, the Guanzhuang-Tangdian section and the Tangdian-Xindian section.
The Xinyi section of the AJF, mainly manifested as strike-slip and normal faulting, has a right-handed and right-step distribution. The step-over zone with~900m in width and~16km in length is dominated by extension, leaving a length-width ratio of 18:1, much larger than the traditional pull-apart basin ratio of 3:1. According to the shallow seismic profile, the shallow seismic line in the Guanzhuang-Tangdian section revealed the extensional fault depression basin on the north side of the terrace, and the bedrock top of the basin gradually became shallower toward the north. The top of the bedrock in the shallow seismic survey line on the north side of the Nanmalingshan suddenly became deeper, and the NNE-trending compressional near-EW basins of the Nanmalingshan and Tashan developed. The two basins were formed from different origin. With the activity of the Anqiu-Juxian Fault and the erosion and deposition of the Shu River, the two basins gradually developed and merged into a composite basin, and the basin structure was consistent with the Quaternary stratigraphic isopach.
The Xinyi section of the Anqiu-Juxian Fault presents the deformation characteristics of the same genesis and coordinated geometric structure in the deep and superficial layers, showing a single branch in the deep, cutting through the Cretaceous strata, extending and rupturing upward along the contact interface between the bedrock mountains and the Quaternary soft soil layer in the superficial layer. The fault is shown as a single branch in the north and south Maling Mountains, and ruptured to the surface in many places. In the pull-apart basin in the middle of the fault, the thickness of the Quaternary system is more than 300m. When the Anqiu-Juxian Fault ruptures to the upper part, it divides into two branches, the east and the west, which are concealed and stand opposite to each other in the shape of “Y”, forming the Anqiu-Juxian Fault. On the east-west boundary of the fault, the latest activity is along the west branch of the fault, which is a Holocene active fault. When it extends to the basement rock mass of the Maling Mountains in the north and south, the depth of the upper fault point gradually becomes shallower until it is exposed.
The vertical movement of the Xinyi section of the AJF shows the four quadrants characteristics of uplift and subsidence. The extensional area forms a pull-apart basin, while the compressive area constitutes an uplift. The vertical bedrock offset of the Guanzhuang-Tangdian section, with the maximum vertical offset of~230m, gradually decreases to both sides. It can be concluded that the Xinyi section of the AJF presents a spiral-like pivot movement.

Table and Figures | Reference | Related Articles | Metrics
RAYLEIGH WAVE PHASE VELOCITY AND AZIMUTHAL ANISOTROPY OF THE MIDDLE-SOUTHERN SEGMENT OF THE TAN-LU FAULT ZONE AND ADJACENT REGIONS FROM AMBIENT NOISE TOMOGRAPHY
GU Qin-ping, KANG Qing-qing, ZHANG Peng, MENG Ke, WU Shan-shan, LI Zheng-kai, WANG Jun-fei, HUANG Qun, JIANG Xin, LI Da-hu
SEISMOLOGY AND GEOLOGY    2020, 42 (5): 1129-1152.   DOI: 10.3969/j.issn.0253-4967.2020.05.007
Abstract577)   HTML    PDF(pc) (16177KB)(353)       Save
The middle-southern segment of the Tan-Lu fault zone and its adjacent area is located in the joint zone of the North China craton and Yangtze craton. It is a natural test ground for studying the problems of intracontinental collision, continental convergence and growth, geodynamics and lithospheric deformation. Although early research involved the central-south section of the Tan-Lu fault zone and its neighboring areas, it is difficult to carry out a detailed discussion on the S-wave velocity and azimuthal anisotropy in the middle and south section of the Tan-Lu fault zone and its adjacent areas, due to different research purposes and objects, the limitation in selecting research scope or the lack of resolution.
To obtain more detailed crust-mantle velocity structure and azimuthal anisotropy distribution characteristics in the study area, this paper uses waveform data recorded by 261 fixed wideband seismic stations in the middle-southern segment of the Tan-Lu fault zone and its adjacent zone for two consecutive years. The phase velocity dispersion curve of Rayleigh surface wave with 5~50s period was extracted by time-frequency analysis. Then, the study area was divided into 0.25°×0.25°grids, and the two-dimensional Rayleigh phase velocity and azimuthal anisotropy distribution image in the area was retrieved using the Tarantola method.
The phase velocity and azimuthal anisotropy distribution images of 6 representative periods were analyzed. These images reveal the lateral heterogeneity of the crust-mantle velocity structure and spatial differences in azimuthal anisotropy in the middle-southern segment of the Tan-Lu Fault and its adjacent areas. The results show that the distribution characteristics of phase velocity have a good correspondence with geological tectonic units. In the shallow part of the earth's crust, the basins covered by thick unconsolidated sedimentary layers and the bedrock exposed orogenic belts show low and high velocity anomalies, respectively. With the increase of the period(15~20s), the influence of the shallow sedimentary layer is weakened, and the high-speed anomaly appears in some plain areas such as the Hehuai Basin and Subei Basin. The distribution of phase velocity in the lower crust and upper mantle(25~30s)is affected by the thickness of the crust, which is inversely related to the burial depth of Moho surface. For example, the Dabie orogenic belt with a thickness of 40km changes from a short period high-speed to a low-speed distribution.
Due to the differences in the tectonic environment of each geological structural unit in the study area, the azimuthal anisotropy of Rayleigh waves has obvious spatial differences. In general, the strength of anisotropy increases with increasing period(depth), and the direction of fast wave is more regular and followable. Based on the consistent distribution of low velocity and azimuthal anisotropy from the shallow crust to the lithospheric mantle in the Subei Basin, we believe that there may be a strong crust-mantle coupling phenomenon. The results obtained by different seismic anisotropy observation methods are different manifestations of anisotropy. However, due to the one-sided and low-resolution problems of single observation method, it is necessary to carry out joint inversion or comprehensive multiple observation methods.
Reference | Related Articles | Metrics
THE CRUSTAL SHALLOW STRUCTURES AND FAULT ACTIVITY DETECTION IN XINYI SECTION OF TAN-LU FAULT ZONE
GU Qin-ping, XU Han-gang, YAN Yun-xiang, ZHAO Qi-guang, LI Li-mei, MENG Ke, YANG Hao, WANG Jin-yan, JIANG Xin, MA Dong-wei
SEISMOLOGY AND GEOLOGY    2020, 42 (4): 825-843.   DOI: 10.3969/j.issn.0253-4967.2020.04.004
Abstract1553)   HTML    PDF(pc) (7994KB)(292)       Save
The Tan-Lu fault zone is the largest active tectonic zone in eastern China, with a complex history of formation and evolution, and it has a very important control effect on the regional structure, magmatic activity, the formation and distribution of mineral resources and modern seismic activity in eastern China. Xinyi City has a very important position as a segmental node in the Shandong and Suwan sections of the Tan-Lu fault zone. Predecessors have conducted research on the spatial distribution, occurrence and activity characteristics of the shallow crustal faults in the Suqian section of the Tan-Lu belt, and have obtained some new scientific understandings and results. However, due to different research objectives or limitations of research methods, previous researches have either focused on the deep crustal structure, or targeted on the Suqian section or other regions. However, the structural style and deep-shallow structural association characteristics of Xinyi section of Tan-Lu belt have not been well illustrated, nor its activity and spatial distribution have been systematically studied. In order to investigate the shallow crustal structure features, the fault activities, the spatial distribution and the relationship between deep and shallow structures of the Xinyi section of the Tan-Lu Fault, we used a method combining mid-deep/shallow seismic reflection exploration and first-break wave imaging. Firstly, a mid-deep seismic reflection profile with a length of 33km and a coverage number greater than 30 was completed in the south of Xinyi City. At the same time, using the first arrival wave on the common shot record, the tomographic study of the shallow crust structure was carried out. Secondly, three shallow seismic reflection profiles and one refraction tomography profile with high resolution across faults were presented. The results show that the Xinyi section of Tan-Lu fault zone is a fault zone composed of five concealed main faults, with a structural pattern of “two grabens sandwiched by a barrier”. The five main faults reveal more clearly the structural style of “one base between two cuts” of the Tan-Lu fault zone. From west to east, the distribution is as follows: on the west side, there are two high-angle faults, F4 and F3, with a slot-shaped fault block falling in the middle, forming the western graben. In the middle, F3 and F2, two normal faults with opposite dip directions, are bounded and the middle discontinuity disk rises relatively to form a barrier. On the east side, F2 and F1, two conjugate high-angle faults, constitute the eastern graben. The mid-deep and shallow seismic reflection profiles indicate that the main faults of the Xinyi section of Tan-Lu fault zone have a consistent upper-lower relationship and obvious Quaternary activities, which play a significant role in controlling the characteristics of graben-barrier structure and thickness of Cenozoic strata. The shape of the reflective interface of the stratum and the characteristics of the shallow part of the fault revealed by shallow seismic reflection profiles are clear. The Mohe-Lingcheng Fault, Xinyi-Xindian Fault, Malingshan-Chonggangshan Fault and Shanzuokou-Sihong Fault not only broke the top surface of the bedrock, but also are hidden active faults since Quaternary, especially the Malingshan-Chonggangshan Fault which shows strong activity characteristics of Holocene. The results of this paper provide a seismological basis for an in-depth understanding of the deep dynamics process of Xinyi City and its surrounding areas, and for studying the deep-shallow tectonic association and its activity in the the Xinyi section of the Tan-Lu Fault.
Reference | Related Articles | Metrics
RESEARCH ON THE CHARACTERISTICS OF QUATERNARY ACTIVITIES OF SU-XI-CHANG FAULT
ZHANG Peng, ZHANG Yuan-yuan, XU Han-gang, LIU Jian-da, CHEN Jian-qiang, LI Li-mei, LI Jin-liang, GU Qin-ping, JIANG Xin
SEISMOLOGY AND GEOLOGY    2019, 41 (5): 1172-1184.   DOI: 10.3969/j.issn.0253-4967.2019.05.007
Abstract690)   HTML    PDF(pc) (6456KB)(610)       Save
Running across the urban areas of Changzhou, Wuxi and Suzhou, the NW-trending Su-Xi-Chang Fault is an important buried fault in Yangtze River Delta. In the respect of structural geomorphology, hilly landform is developed along the southwest side of the Su-Xi-Chang Fault, and a series of lakes and relatively low-lying depressions are developed on its northeast side, which is an important landform and neotectonic boundary line. The fault controlled the Jurassic and Cretaceous stratigraphic sedimentary and Cenozoic volcanic activities, and also has obvious control effects on the modern geomorphology and Quaternary stratigraphic distribution.
Su-Xi-Chang Fault is one of the target faults of the project "Urban active fault exploration and seismic risk assessment in Changzhou City" and "Urban active fault exploration and seismic risk assessment in Suzhou City". Hidden in the ground with thick cover layer, few researches have been done on this fault in the past. The study on the activity characteristics and the latest activity era of the Su-Xi-Chang Fault is of great significance for the prevention and reduction of earthquake disaster losses caused by the destructive earthquakes to the cities of Changzhou, Wuxi and Suzhou.
Based on shallow seismic exploration and drilling joint profiling method, Quaternary activities and distribution characteristics of the Su-Xi-Chang Fault are analyzed systematically. Shallow seismic exploration results show that the south branch of the Su-Xi-Chang Fault in Suzhou area is dominated by normal faulting, dipping to the north-east, with a dip angle of about 60° and a displacement of 3~5m on the bedrock surface. The north branch of the Su-Xi-Chang Fault in Changzhou area is dominated by normal faulting, dipping to the south, with a dip angle of about 55°~70° and a displacement of 4~12m on the bedrock surface. All breakpoints of Su-Xi-Chang Fault on the seismic exploration profiles show that only the bedrock surface was dislocated, not the interior strata of the Quaternary.
On the drilling joint profile in the Dongqiao site of Suzhou, the latest activity of the south branch of Su-Xi-Chang Fault is manifested as reverse faulting, with maximum displacement of 2.9m in the upper part of Lower Pleistocene, and the Middle Pleistocene has not been dislocated by the fault. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 3.7m in the Neogene stratum. On the drilling joint profile in the Chaoyang Road site of Changzhou, the latest activity of the north branch of Su-Xi-Chang Fault is manifested as reverse faulting too, with maximum displacement of 2.8m in the bottom layer of the Middle Pleistocene. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 10.2m in the bedrock surface.
Combining the above results, we conclude that the latest activity era of Su-Xi-Chang Fault is early Middle Pleistocene. The Su-Xi-Chang Fault was dominated by the sinistral normal faulting in the pre-Quaternary period, and turned into sinistral reverse faulting after the early Pleistocene, with displacement of about 3m in the Quaternary strata. The maximum magnitude of potential earthquake on the Su-Xi-Chang Fault is estimated to be 6.0.
Reference | Related Articles | Metrics
NEW EVIDENCES OF HOLOCENE ACTIVITY IN THE JIANGSU SEGMENT OF ANQIU-JUXIAN FAULT OF THE TANLU FAULT ZONE
ZHANG Peng, ZHANG Yuan-yuan, LI Li-mei, JIANG Xin, MENG Ke
SEISMOLOGY AND GEOLOGY    2019, 41 (3): 576-586.   DOI: 10.3969/j.issn.0253-4967.2019.03.003
Abstract1531)   HTML    PDF(pc) (9085KB)(298)       Save
Anqiu-Juxian Fault is an important fault in the Tanlu fault zone, with the largest seismic risk, the most recent activity date and the most obvious surface traces. It is also the seismogenic fault of the Tancheng M8 1/2 earthquake in 1668. There are many different views about the southern termination location of surface rupture of the Tancheng earthquake and the Holocene activity in Jiangsu segment of this fault. Research on the latest activity time of the Jiangsu segment of Anqiu-Juxian Fault, particularly the termination location of surface rupture of the Tancheng earthquake, is of great significance to the assessment of its earthquake potential and seismic risk.
Based on trench excavation on the Jiangsu segment of Anqiu-Juxian Fault, we discuss the time and characteristics of its latest activity. Multiple geological sections from southern Maling Mountain to Chonggang Mountain indicate that there was an ancient seismic event occurring in Holocene on the Jiangsu segment of Anqiu-Juxian Fault. We suggest the time of the latest seismic event is about(4.853±0.012)~(2.92±0.3)ka BP by dating results. The latest activity is characterized by thrust strike-slip faulting, with the maximum displacement of 1m. Combined with the fault rupture characteristics of each section, it is inferred that only one large-scale paleo-earthquake event occurred on the Jiangsu segment of Anqiu-Juxian Fault since the Holocene.
The upper parts of the fault are covered by horizontal sand layers, not only on the trench in the west of Chonggang mountain but also on the trench in Hehuan Road in Suqian city, which indicates that the main part of the Jiangsu segment of Anqiu-Juxian Fault was probably not the surface rupture zone of the 1668 Tancheng M8 1/2 earthquake.
In short, the Jiangsu segment of Anqiu-Juxian Fault has experienced many paleo-earthquake events since the late Pleistocene, with obvious activity during the Holocene. The seismic activities of the Jiangsu segment of Anqiu-Juxian Fault have the characteristics of large magnitude and low frequency. The Jiangsu segment of Anqiu-Juxian Fault has the deep tectonic and seismic-geological backgrounds of big earthquakes generation and should be highly valued by scientists.
Reference | Related Articles | Metrics
research on characteristics of late quaternary activity of the jiangsu segment of anqiu-juxian fault in the tanlu fault zone
ZHANG Peng, LI Li-mei, RAN Yong-kang, CAO Jun, XU Han-gang, JIANG Xin
SEISMOLOGY AND GEOLOGY    2015, 37 (4): 1162-1176.   DOI: 10.3969/j.issn.0253-4967.2015.04.018
Abstract970)      PDF(pc) (11088KB)(2317)       Save

Anqiu-Juxian Fault is an important fault in the Tanlu fault zone, with the highest seismic risk, the most recent activity date, and the most obvious surface traces. Due to lack of credible geological evidences, there is big controversy on the Holocene activity in the Jiangsu segment of this fault. Research on the characteristics of late Quaternary activity in the Jiangsu segment of Anqiu-Juxian Fault, particularly its latest activity time, is of great significance to assessment of its earthquake ability and seismic risk. Based on field investigations on the Jiangsu segment of Anqiu-Juxian Fault, and combining with the results of fault activities identification on this fault in Suqian City, we discussed the characteristics of its activities in late Quaternary. Multiple geological sections we found in this study and the results of fault activities identification in Suqian City all indicate that there was an ancient seismic event occurring in middle period of Holocene in the segment from southern Maling Mountain to Suqian City; but the trench at Houchen village did not show any evidence of Holocene activity on the Chonggangshan segment of this fault. Based on method of shallow seismic exploration, we carried out a systematic exploration of this fault to get its accurate position and activity characteristics. The results show that Anqiu-Juxian Fault in Suqian City is mainly characterized by dextral strike-slip, associated with both thrusting and extensional movement in different positions. A series of low hills were formed along the fault in the north of Suqian City, and a small graben basin was formed in the south of Suqian City, both are controlled by the dextral strike-slip movement of this fault. The Jiangsu segment of Anqiu-Juxian Fault in general is characterized by dextral strike-slip with thrusting movement. But some parts of it are characterized by dextral strike-slip with extensional movement. The Jiangsu segment of Anqiu-Juxian Fault experienced a number of activities since the late Quaternary, with an obvious activity in Holocene. The seismic activities of Jiangsu segment of Anqiu-Juxian Fault have the characteristic of high intensity and low frequency. Its activities decrease gradually from north to south as a whole.

Reference | Related Articles | Metrics
RESEARCH ON THE CHARACTERISTICS OF QUATERNARY ACTIVITIES OF FEIHUANGHE FAULT IN XUZHOU AREA
ZHANG Peng, LI Li-mei, LIU Jian-da, XU Han-gang, LI Jin-liang, GU Qin-ping, JIANG Xin
SEISMOLOGY AND GEOLOGY    2015, 37 (1): 208-221.   DOI: 10.3969/j.issn.0253-4967.2015.16
Abstract521)      PDF(pc) (9610KB)(401)       Save

Running diagonally across the urban area of Xuzhou, the Feihuanghe(the abandoned Yellow River)Fault starts from Jiahezhai in the northwest, extending southeastwards through Sushantou, Xuzhou City and Liangtang along the abandoned Yellow River till the north of Wangji Town of Suining County, striking NWW, dipping SW, with a total length of about 70 kilometers. It is a buried fault, crosscutting Xuzhou-arc structure. There are significant topographic features indicating the existence of the fault on the earth's surface, which are clearly displayed in remote sensing images. There have been no devastating earthquakes occurring along the fault since the recorded history.
Feihuanghe Fault is one of the target faults of the project "Urban active fault exploration and seismic risk assessment in Xuzhou City". Few researches have been done on this fault in the past. The previous analysis assumes that the fault is a sinistral transtensional fault with extensional faulting in the Xuzhou-Suzhou arcuate structure at first and transtensional faulting of the Neocathaysian system later.
Based on field geological survey, shallow seismic exploration and composite drilling section method, Quaternary activities of Feihuanghe Fault are analyzed. Shallow seismic exploration results show that the Feihuanghe Fault is composed of a NE-trending south branch and a SW-trending north branch, forming a graben structure with the width of 1~2km. All breakpoints of the Feihuanghe Fault on the seismic exploration profiles show that only the bedrock surface was dislocated, not the interior strata of the Quaternary. The composite drilling profiling results show that Feihuanghe Fault has dislocated the strata of Mid Pleistocene, but not the top surface of Mid Pleistocene. Furthermore, we discovered a secondary fault of Feihuanghe Fault exposed at Fengshan Hill, and its latest activity date is the mid period of Mid-Pleistocene inferred from the cementation degree of gouge, dating results and geomorphic features. Combining the above results, we conclude that Feihuanghe Fault is of sinistral strike-slip in the early stage, and extensional faulting since the Quaternary, and the latest activity date is the middle period of Mid Pleistocene. Controlled by the tectonic setting, the activities of the NW-trending faults in Xuzhou area are significantly weaker than that of the NW-trending fault in adjacent southwest Shandong.

Reference | Related Articles | Metrics