On May 22, 2021, an MS7.4 earthquake occurred in the Madoi area of Banyan Har block, with a focal depth of about 8km. The seismogenic fault is deduced as the Jiangcuo Fault, a branch of the east Kunlun strike-slip fault. Different with previous strong earthquakes which located at the boundary faults around the Bayan Har block, the Madoi MS7.4 earthquake occurred inside the block and about 70km away from the boundary fault. Furthermore, there is a contradiction between the small strike-slip component of the seismogenic fault and the large earthquake magnitude. The above phenomena indicate that the Madoi earthquake may have special seismotectonic background and seismogenesis. Strong earthquakes in Tibetan plateau are always closely related to the deep crustal structure and dynamic process. Therefore, it is of great significance to study the crustal structure and the distribution of deep faults in the Madoi area in order to reveal the deep tectonic background and genesis of the Madoi MS7.4 earthquake. To research the deep seismotectonic environments of the MS7.4 Madoi earthquake, we reinterpret the deep seismic sounding(DSS)results in Madoi area. The DSS profile reveals fine crustal structure beneath the Madoi area, and divides the crust into 3 crustal layers. From the crustal velocity structure of the Madoi and adjacent area, we found the generation of the Madoi earthquake is closely connected with the deep structure and crustal medium. Through analysis on the velocity structures, we get the following understanding: 1)There is an interface in the upper crust of the Madoi area, which represents the velocity changing from 5.8km/s to 5.6km/s and divides the upper crust into two layers. The upper layer is composed of high velocity structure, indicating a brittle medium environment, while the lower layer consists of low velocity zone and provides the strain accumulation condition for the Madoi earthquake. In addition, the transition between local high velocity zone(HVZ)and the normal crust in the focal area provides an ideal medium environment for earthquake preparation. 2)A wedge-shaped low velocity zone(LVZ)exists in the lower crust south of Madoi, which provides an environment for the movement of weak materials from the SW to NE direction. However, the high-velocity lower crust beneath Madoi area resists the crustal flow and thus transforms the horizontal movement to vertical upwelling, resulting in the stress concentration of the upper crust beneath Madoi area, which may provide dynamic for the preparation of the Madoi MS7.4 earthquake. 3)The Jiangcuo Fault merges into the East Kunlun Fault in the deep crust, forming a reverse thrust fault structural style dominated by the East Kunlun strike-slip fault. As a branch of the East Kunlun Fault, the strike slip of the Jiangcuo Fault is the adjustment results of strain and movement of the East Kunlun Fault. Moreover, the Jiangcuo Fault and adjacent faults constitute the horsetail-shaped fault zone, combined with the imbricated thrust fault zone profile, reflecting the compressive stress of Modoi area that facilitates the strain concentration. Therefore the occurrence of the Madoi earthquake is related to the left-lateral strike-slip movement of the East Kunlun Fault and the special imbricated thrust fault assemblages. On the other hand, the upwelling of the lower crustal flow and the corresponding sliding of the upper crust may be related with the occurrence of the Madoi earthquake. In conclusion, the Madoi MS7.4 earthquake is closely related to the ideal medium environment of the upper crust, the lower crustal flow and vertical upwelling beneath Madoi area, as well as the left-lateral strike-slip of the East Kunlun Fault.