The Haicheng MS7.3 earthquake is the first successfully predicted earthquake in China, which saved a large number of lives and avoided property losses. However, the investigation after the earthquake did not find a continuous surface rupture zone, and only some ground fissures and sandblasting were found in the epicenter area. The isoseismal line of this earthquake shows obvious conjugate characteristics. Which fault is the seismogenic structure of the Haicheng earthquake has always been controversial. According to the focal mechanism and distribution of ground fissures, some scholars suggested the seismic structure is the Haicheng River Fault with a strike of NWW. However, other scholars suggested the Jinzhou Fault has a larger scale and controls the geomorphic boundary. Jinzhou Fault is also a major seismic structure distributed in the west of Liaodong Peninsula, with a strike of NENNE and a length of 280km. The north Gaizhou-Anshan segment of the Jinzhou Fault is conjugated with the Haicheng River Fault. Both of them are likely to be the seismogenic structure of the Haicheng earthquake, or both ruptured in the Haicheng earthquake. Based on remote sensing image interpretations, four sites of the fault scarps, including the Yujiagou, Houwudao, Dongjiagou, and Tashan sites, were distinguished and verified in situ. And using micro geomorphology measurement and paleoseismic trench excavation in the Huluyu site of the north Gaizhou-Anshan segment of the Jinzhou Fault which is conjugated with the Haicheng River Fault, this paper obtains the following understandings: The Jinzhou Fault extends from the northeast of the Dashiqiao City to the south of the Anshan City. There are prominent NE-trending fault scarps, which were formed in the late Pleistocene and Holocene, on geomorphic surfaces of the basin mountain transition zone. Due to farming and building, fault scarps are not preserved well, and the distribution of the fault scarp is discontinuous. The height of fault scarps is mostly 1~2m, up to 3m at most. The paleoseismic trench was excavated in the Huluyu village, south of Haicheng City. The paleoseismic trench revealed a ~20m wide bedrock fracture zone in the north Gaizhou-Anshan City segment of the Jinzhou Fault. Three Late Pleistocene to Holocene strata(U3 to U5)overlie the bedrock fracture zone. Five fault planes(F1 to F5)are revealed in the trench. The fault F1 recorded the newest paleoearthquake event and the Fault F2 recorded the earlier one. In summary, according to the cover-cut relationship between strata and faults, at least two paleoseismic events occurred from the Late Pleistocene((37.6±2.2)ka)to the Holocene. The newer one occurred in the Holocene(after(11.7±0.8)ka, probably 400~500a before present). However, because of the thin Holocene strata, we cannot distinguish more paleoearthquakes in the trench. Therefore, it is still doubtful whether the north Ganzhou-Anshan segment of the Jinzhou Fault ruptured in the Haicheng earthquake in 1975. However, the confident conclusion is that the north Gaizhou-Anshan City segment of the Jinzhou Fault is an active fault in the latest Late Pleistocene to Holocene.