The Fujian area is located tectonically at the southeastern margin of the South China continent, which consists of three sub-blocks, the northwest Fujian block, the southwest Fujian block and the east Fujian block. This region is the forefront of the interaction between the Eurasian plate and the Philippine Sea plate. Geologically, the Fujian area has undergone a complex tectonic evolution process, and the huge intrusive-volcanic rocks formed by multi-stage tectonic changes were widely exposed in this region. Since the inversion of the crustal three-dimensional P-wave velocity structure was important for understanding the tectonic evolution process and the deep seismogenic environment in the region, a lot of research work has been carried out in Fujian area, including seismic body wave tomography, ambient noise surface wave tomography and artificial seismic profiles. Although some important features of the crustal velocity structure in this region had been obtained by natural seismic body wave or ambient noise surface wave imaging, the grid lateral resolution was relatively poor(generally above 0.5° horizontally), which made it difficult to constrain effectively the detailed features of the fault zone velocity structure in this region. For example, the Fu'an-Nanjingfault zone, as an important fault zone in the region, which controlled the magmatic intrusion activities before the Mesozoic, the features of its deep velocity structure have been rarely revealed. Although the resolution of artificial seismic profiles was high, it covered a relatively limited detection range in this region.
In this paper, 3203 natural local earthquakes were selected using the observation reports of Fujian seismic network from 1999 to 2021 and integrating some data from neighboring provinces, which includes both 76423 absolute arrival time data and 389021 P-wave relative arrival time data from131 seismic stations. The test results of checkboard showed that the northwest Fujian block had poor recovery at all depths due to the limited internal seismic ray coverage, most areas of the southwest Fujian block had good recovery at all depths, and the east Fujian block could been recovered at all depths except for its northern region which had poor recovery at 0km, 25km and 30km depth. Under this resolution condition, the three-dimensional crustal P-wave fine velocity structure in Fujian region was obtained. The arrival time residual conforms to a Gaussian distribution before and after the inversion. The travel time residuals of the seismic phases were mainly distributed in the range of -1.5 to 1.5s before the inversion, and these travel time residuals of the seismic phases were mainly distributed in the range of -0.5 to 0.5s after this inversion. The travel time residuals were reduced significantly and were more concentrated around 0. Using the velocity structure obtained from the inversion and combining with the geological structure and geophysical field characteristics of this region, the tectonic implications which may be related to these features of velocity structure in the region were discussed. The main results are as follows:
(1)In the near-surface shallow layer, the P-wave low-velocity feature is mainly correlated better with the NW-trending faults, such as the Nanri island fault, Meizhou bay fault, Yong'an-Jinjiang fault and Jiulong river fault. This may be related to the relatively young activity age and more fragmented shallow parts of the NW-trending faults. The lateral variation of velocity is small in the middle and upper crust at 5km and 10km depths relative to other depths, but there is a relatively high velocity zone of P velocity in northeastern Fujian area.
(2)The P-wave velocity structure shows generally a relatively low velocity feature at 15~25km depth within the southwest Fujian block, especially in the south of the Yong'an-Jinjiang fault zone. Although the range distribution of this low velocity anomaly is relatively large, the magnitude of the anomaly is not large, and the upper crust and the bottom of the lower crust in the southwest Fujian block do not show this anomalous feature. On the other hand, the magnetotelluric sounding of the middle and lower crust of this block shows a high resistivity and the receiver function shows a low Poisson's ratio, this suggests that the low-velocity feature of this block is not caused by partial melt or ductile shear zone, but may be mainly caused by the more quartz-rich composition of the regional crust.
(3)There exist two P-wave low velocity anomalies in the middle-lower crust of the East Fujian block, which are below the two high thermal anomalous area of the geothermal heat flow in this region. It may suggest that the formation of these two relative low velocity anomalies may be related to the transformation of the coastal area into an extensional environment and the upwelling of deep mantle materials caused by the high-angle retraction of the Paleo-Pacific plate in the late Yanshanian period.
(4)The P-wave velocity features show that the velocity at the two sides of the Fuan-Nanjing fault zone is different obviously in the middle and lower crustal depths. This may imply the Fu'an-Nanjing fault has a certain control on the distribution of crustal velocity structure in the region, which is consistent with its deep characteristics of cutting the Moho interface which reflected by the Bourg gravity anomaly and aeromagnetic anomaly, which further confirms that it is a major deep fault zone in the region.
Yingjiang area is located in the China-Burma border,the Sudian-Xima arc tectonic belt,which lies in the collision zone between the Indian and Eurasian plates.The Yingjiang earthquake occurring on May 30th,2014 is the only event above MS6.0 in this region since seismicity can be recorded.In this study,we relocated the Yingjiang MS5.6 and MS6.1 earthquake sequences by using the double-difference method.The results show that two main shocks are located in the east of the Kachang-Dazhuzhai Fault,the northern segment of the Sudian-Xima Fault.Compared with the Yingjiang MS5.6 earthquake,the Yingjiang MS6.1 earthquake is nearer to the Kachang-Dazhuzhai Fault.The aftershocks of the two earthquakes are distributed along the strike direction of the Kachang-Dazhuzhai Fault (NNE).The rupture zone of the main shock of Yingjiang MS6.1 earthquake extends northward approximately 5km.The aftershocks of two earthquakes are mainly located in the eastern side of the Kachang-Dazhuzhai Fault with a significant asymmetry along the fault,which differ from the characteristics of the aftershock distribution of the strike-slip earthquake.It may indicate that the Yingjiang earthquakes are conjugate rupture earthquakes.The non-double-couple components are relatively high in the moment tensor.We speculate that the Yingjiang earthquakes are related to the fractured zone caused by the long-term seismic activity and heat effect in the deep between Kachang-Dazhuzhai Fault and its neighboring secondary faults.Aftershock distribution of the Yingjiang MS6.1 earthquake on the southern area crosses a secondary fault on the right of the Kachang-Dazhuzhai Fault,suggesting that the coseismic rupture of the secondary fault may be triggered by the dynamic stress of the main shock.
We integrated two-month phase data recorded by Yunnan Seismic Network, Zhaotong Seismic Network, Qiaojia Seismic Array and temporal stations deployed around the Ludian earthquake source region and relocated the aftershock sequence of the Ludian earthquake. The locations of 1 750 aftershocks were determined using double-difference location algorithm. The relocation result shows that the aftershock distribution has two predominant directions, to the southeast and southwest, and shows itself as an asymmetric conjugate shape. The lengths of the two aftershock strips are about 16km. The angle between the two strips is about 100°. Aftershock distribution shows that the seismogenic fault of the Ludian earthquake is a high-angle strike-slip fault. The mainshock is located at the middle at southwest of the two aftershock strips. Early aftershocks are distributed mainly along the NW-SE direction, perpendicular to the Zhaotong-Ludian Fault. The aftershocks located to the southwest of the mainshock may be triggered by the mainshock. According to the aftershock distribution and its relations with neighboring faults, focal mechanism of the mainshock, the long axis orientation of seismic intensity map, and distribution of landslides, we speculate that the seismogenic fault is the Baogunao-Xiaohe Fault. There are significant differences not only in seismic activity, deep velocity structure, but also the block movement direction and rate on both sides of the Baogunao-Xiaohe Fault. The northward expansion of aftershock activity may be blocked by the high-velocity anomaly zone located on the north side of the Baogunao-Xiaohe Fault.