Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
THE SURFACE RUPTURE CHARACTERISTICS BASED ON THE GF-7 IMAGES INTERPRETATION AND THE FIELD INVESTIGA-TION OF THE 2022 MENYUAN MS6.9 EARTHQUAKE
WANG Liao, XIE Hong, YUAN Dao-yang, LI Zhi-min, XUE Shan-yu, SU Rui-huan, WEN Ya-meng, SU Qi
SEISMOLOGY AND GEOLOGY    2023, 45 (2): 401-421.   DOI: 10.3969/j.issn.0253-4967.2023.02.006
Abstract290)   HTML16)    PDF(pc) (22292KB)(216)       Save

On January 8th, 2022, an MS6.9 earthquake occurred around Menyuan County(37.77°N, 101.26°E), Qinghai Province. The epicenter is located in the northeastern part of the Tibetan plateau, where the western section of the Lenglongling Fault meets the eastern section of the Tolaishan Fault. In order to know the spatial distribution of coseismic surface rupture zone as soon as possible, and determine the seismogenic structure, the post-earthquake GF-7 remote sensing images of the Menyuan MS6.9 earthquake were analyzed. Moreover, combining the interpretation of the GF-7 images and the field investigation, the distribution of the co-seismic surface rupture was determined and the typical coseismic landforms, and the image recognition features of various co-seismic landforms are interpreted and summarized. The results show that the earthquake produced two major surface rupture zones with a left-stepped oblique spatial arrangement. The main northern branch rupture distributes on the west side of the Lenglongling Fault, with a length of about 22km and a strike of 100°N~120°E, the secondary rupture of the southern branch distributes along the eastern section of the Tuolaishan Fault, with a length of about 4km and a strike of N90°E. The total length of the two rupture zones is about 26km.

Along the rupture zones, a series of typical left-lateral strike-slip coseismic landforms were formed, such as tensional fractures, tensional-shear fractures, pressure ridges, pressure bulges, left-lateral strike-slip gullies, as well as left-lateral strike-slip roadbeds, etc. We divided the surface rupture into six segments to conduct detailed observation and analysis, that is, the west of Daohe segment, Liuhuanggou segment, Honggou segment, Yongan River segment and Yikeshugou segment, from west to east among the main rupture zone of the north branch, as well as the secondary rupture zone of the south branch. In general, each co-seismic landform has its distinctive image characteristics, and we obtained them from the interpretation and summarization of the GF-7 images. The shear fractures located at the two ends of the main rupture and in the areas where the surface rupture is weak are zigzaggy on the remote sensing images, while the shear fractures located in the areas where the surface rupture is intense are shown as dark, wide and continuously smooth stripes; thrust scarps are represented on remote sensing images as shaded, narrow and slightly curved strips; the pressure ridges and pressure bulges exhibit black elliptical feature on the images that are parallel or at a smaller angle to the main rupture; tensional-shear fractures are displayed as black strips arranged in en echelon with a 30°~45° intersection angle with the main shear rupture, and their linear features are not as straight as those of shear ruptures yet are still distinct; the coseismic scarps formed on the ice are manifested in the images as traction bend and texture change. Based on the GF-7 images, the cumulative dislocations of typical sinistral landforms along the co-seismic surface rupture on Lenglongling Fault are interpreted and futher compared with the previous study. This is the first time of application of GF-7 to the strong earthquake geohazards monitoring since it was officially launched in August 2020. From this study, it can be seen that with its high resolution, GF-7 can be used to accurately identify faulted features. Not only it could provide information of the geometric roughness, complexity and segmentation of the fracture, but also can record clear dislocations of the landforms. The study of the GF-7 images in the 2022 Menyuan earthquake has showed that the GF-7 images can provide strong data support for the geology and geological hazard studies.

Table and Figures | Reference | Related Articles | Metrics
GEOMORPHOLOGICAL CHARACTERISTICS OF DAQINGSHAN DRAINAGE AREA IN THE NORTHERN MARGIN OF HETAO BASIN
GAO Ze-min, LIU Xing-wang, SHAO Yan-xiu, XIE Hong
SEISMOLOGY AND GEOLOGY    2019, 41 (6): 1317-1332.   DOI: 10.3969/j.issn.0253-4967.2019.06.001
Abstract699)   HTML    PDF(pc) (5897KB)(466)       Save
The Daqingshan Fault located in the northern margin of the Hetao Basin has experienced intensive activity since late Quaternary, which is of great significance to the molding of the present geomorphology. Since basin geomorphological factors can be used to reflect regional geomorphological type and development characteristics, the use of typical geomorphology characteristics indexes may reveal the main factors that control the formation of topography. In recent years, more successful research experience has been accumulated by using hypsometric integral(HI) values and channel steepness index(ksn)to quantitatively obtain geomorphic parameters to reveal regional tectonic uplift information. The rate of bedrock uplifting can be reflected by channel steepness index, the region with steep gradient has high rate of bedrock uplifting, while the region with slower slope has low rate of bedrock uplifting. The tectonic uplift can shape the geomorphic characteristics by changing the elevation fluctuation of mountains in study area, and then affect the hypsometric integral values distribution trend, thus, the HI value can be used to reflect the intensity of regional tectonic activity, with obvious indicating effect.
Knick point can be formed by fault activity, and the information of knick point and its continuous migration to upstream can be recorded along the longitudinal profile of stream. Therefore, it is possible and feasible to obtain the information of tectonic activity from the geomorphic characteristics of Daqinshan area. The research on the quantitative analysis of regional large-scale tectonic activities in the Daqingshan area of the Yellow River in the Hetao Basin is still deficient so far. Taking this area as an example, based on the method of hypsometric integral(HI) and channel steepness index(ksn), we use the DEM data with 30m resolution and GIS spatial analysis technology to extract the networks of drainage system and seven sub-basins. Then, we calculate the hypsometric integral(HI) values of each sub-basin and fit its spatial distribution characteristics. Finally, we obtain the values of channel steepness index and its fitting spatial distribution characteristics based on the improved Chi-plot bedrock analysis method. Combining the extraction results of geomorphic parameters with the characteristics of fault activity, we attempt to explore the characteristics of drainage system development and the response of stream profile and geomorphology to tectonic activities in the Daqingshan section of the Yellow River Basin.
The results show that the values of the hypsometric integral in the Daqingshan drainage area are medium, between 0.5~0.6, and the Strahler curve of each tributary is S-shaped, suggesting that the geomorphological development of the Daqingshan area is in its prime, and the tectonic activity and erosion is strong. Continuous low HI value is found in the tectonic subsidence area on the hanging wall of the Daqingshan Fault. The distribution characteristics of the HI value reveal that the Daqingshan Fault controls the geomorphic difference between basin and mountain. Longitudinal profiles of the river reveal the existence of many knick points. The steepness index of river distributes in high value along the trend of mountain which lies in the tectonic uplift area on the footwall of the Daqingshan Fault. It reflects that the bedrock uplift rate of Daqingshan area is faster. The distribution characteristics of the channel steepness index show that the uplift amplitude of Daqingshan area is strong and the bedrock is rapidly uplifted, which is significantly different from the subsidence amplitude in the depression basin at the south margin of the fault, indicating that the main power source controlling the basin mountain differential movement comes from Daqingshan Fault. Based on the comparison and analysis on tectonic, lithology and climate, there is no obvious corresponding relationship between the difference of rock erosion resistance and the change of geomorphic parameters, and the precipitation has little effect on the geomorphic transformation of Daqingshan area, and its contribution to the geomorphic development is limited. Thus, we think the lithology and rainfall conditions have limited impact on the hypsometric integral, longitudinal profiles of the river and channel steepness index. Lithology maybe has some influences on the channel knick points, while tectonic activity of piedmont faults is the main controlling factor that causes the unbalanced characteristics of the longitudinal profile of the channel and plays a crucial role in the development of the channel knick points. So, tectonic activity of the Daqingshan Fault is the main factor controlling the uplift and geomorphic evolution of the Daqingshan area.
Related Articles | Metrics
LONGITUDINAL PROFILES AND THEIR TECTONIC SIGNIFICANCE OF THE SHIYANGHE RIVER BASIN IN THE EASTERN QILIANSHAN MOUNTAINS
GAO Xiao-dong, XIE Hong, YUAN Dao-yang, SU Qi, SHAO Yan-xiu
SEISMOLOGY AND GEOLOGY    2019, 41 (2): 320-340.   DOI: 10.3969/j.issn.0253-4967.2019.02.005
Abstract819)   HTML    PDF(pc) (8309KB)(276)       Save
The river system is very sensitive to landscape fluctuations and the pattern of drainage contains the past and present tectonic information and can record the latest even tiny change along the orogenic belt system. Therefore, fluvial geomorphology is always used to describe the shapes of river channels and recognize the different segments of active faults. Qualitative and quantitative geomorphic analyses can provide useful information on detecting active tectonic features and the influence of landscape change and evolution. Quantitative analysis such as analysis of river longitudinal profile and geomorphic indices can help researchers evaluate the relative level of tectonic activity and characterize the geomorphic features of landscape quantitatively.
Our study focuses on the geomorphic analysis of Shiyanghe River Basin which is located in the eastern part of Qilianshan Mountains. The tectonic deformation is very strong since late Cenozoic, and Quaternary active thrust faults, strike-slip faults and active folds are distributed all over the region, indicating that the whole region is suffering from crustal shortening and sinistral shear. In this region, the latest tectonic deformation and tectonic activities have been recorded by its fluvial system.
Based on GIS spatial analysis technology, the longitudinal profiles of seven tributaries(including Gulanghe River, Huangyanghe River, Jintahe River, Zamuhe River, Xiyinghe River, Dongdahe River and Xidahe River)in the Shiyanghe River Basin are extracted by using digital elevation models(DEM)and Matlab script. In channel longitudinal profiles, most tributaries in Shiyanghe River Basin exhibit an increased channel gradient in their midstream and downstream area. This pattern is consistent with the models of transient channel profile which suggests an increase in rock uplift rate or base level fall. The longitudinal profiles of seven tributaries are analyzed synthetically by using the method of bedrock channel erosion model, and the concavity(θ), steepness index(ksn), as well as the knickpoints information(including distribution, elevation, distance from mouth and drainage area)of seven tributaries are obtained. The result shows that each of the tributaries in the Shiyanghe River Basin at least has one major knickpoint. The comprehensive study of the longitudinal profiles, knickpoints and the lithology of the river basin show that the Gulanghe River, Jintahe River, Zamuhe River, Xiyinghe River, Dongdahe River and Xidahe River all have ‘slope-break’ knickpoints, which suggest that they are in a transient state. The knickpoints represent a transient response to the dynamic surface uplift since late Cenozoic. Therefore, we can conclude that the evolution of fluvial geomorphology in eastern Qilian Mountains is mainly related to tectonic activities. Channel segments upstream of knickpoints exhibit lower concavities(mean θ is 0.458±0.053)and higher channel steepness indices(mean ksn is 129.09±1.82). In contrast, lower channel segments are more complanate(mean ksn is 68.162±0.821)and exhibit a higher concavity(mean θ is 0.831±0.147). The distribution of concavity is related to the erosion rate, thence, we can infer that the higher value of concavity in downstream area indicates the higher erosion rate. Because the different steepness index(ks)and the concavity(θ)below and above the reach of knickpoints indicate that they have different development trends in different channel segments, and the distribution of knickpoints represent the evolution process of the longitudinal section of the tributaries. Using the concavity value of the knickpoint, each lower reach longitudinal profile of tributary is fitted. According to the fitted result, the calculated approximate average erosion volume of the Shiyanghe River Basin is 488m since it formed, and the average erosion volume of the six tributaries, which originated in Gulang nappe, is 508.5m. The total amount of erosion is positively correlated with rock uplift when a river is in transient state. Thence, it concludes that the Gulang nappe has experienced a strong uplift. Furthermore, we obtained the spatial distribution of ksn values of the whole fluvial system in the Shiyanghe River Basin from calculating and interpolating the ksn values, and combined the geomorphic parameters results to analyze the tectonic significance of the Shiyanghe River Basin synthetically. The spatial distribution of ksn values of the Shiyanghe River Basin represent the accommodation of geomorphic landscape to the tectonic force and the manner of channels responding to tectonic forces. In this study, most of the channel gradients obtained from midstream are higher than upstream and downstream and ksn values in downstream reaches is less than 60m0.9, the high ksn values are in the Gulang nappe, reaching over 1 400m0.9, which indicates that the Gulang nappe has experienced uplift since the Quaternary. Therefore, we conclude that the regional difference of the ksn is mainly controlled by the uplift rate of bedrocks.
Based on the comprehensive analysis of geomorphic parameters and tectonic background, we conclude that the geomorphic evolution of the Shiyanghe River Basin is in a non-equilibrium state, and the tectonic deformation is the main factor affecting the geomorphic evolution of the eastern Qilianshan Mountains and controlling the present tectonic pattern, geomorphic development and evolution history of the study area.
According to the river longitudinal profiles and modeling analysis, this study indicates that the quantitative geomorphic analyses can provide useful and effective information on detecting active tectonic features and the influence of landscape change and evolution, and the geomorphic indices are useful and appropriate tools to analyze the coupling of tectonic and geomorphy.
Reference | Related Articles | Metrics
GEOMORPHIC FEATURES OF THE HEIHE RIVER DRAINAGE BASIN IN WESTERN QILIAN SHAN-HEXI CORRIDOR AND ITS TECTONIC IMPLICATIONS
SU Qi, YUAN Dao-yang, XIE Hong
SEISMOLOGY AND GEOLOGY    2016, 38 (3): 560-581.   DOI: 10.3969/j.issn.0253-4967.2016.03.005
Abstract1870)      PDF(pc) (6776KB)(736)       Save

Using quantitative geomorphic factors for regional active tectonic evolution is becoming more and more popular. Qilian Mountains-Hexi Corridor which locates in the northern edge of Qinghai-Tibet plateau is the most leading edge of the plateau's northward extension. The uplift rate of all segments and the intensity of influence from tectonic activity are the important evidences to understand the uplift and extension of the plateau. Heihe River Basin is located at the northern piedmont of the western segment of Qilian Mountains, the development of the rivers is influenced by the tectonic activity of the Qilian Mountains, and the unique river morphology is important carriers of the regional tectonic uplift.
Geomorphologic indexes such as hypsometric integral, geomorphologic comentropy and river longitudinal profiles were extracted by GIS tools with free access to the Shuttle Radar Topography Mission(SRTM)DEMs, and according to the different expression of the geomorphological indexes in the Heihe River Basin, we divided the drainage basin into two parts and further compared them to each other.
Recent studies reveal that obvious differences exist in the landscape factors(hypsometric integral, geomorphology entropy and river profiles)in the east and west part of the Heihe Basin. The structural intensity of the west part is stronger than that of the east, for example, in areas above the main planation surface on the western part, the average HI value is 0.337 8, and on the eastern part the HI value is 0.355. Accordingly, areas under the main planation surface are just on the contrary, indicating different structural strength on both sides. Similar phenomenon exists in the whole drainage basins. Furthermore, by comparing the fitting river profiles with the real river profiles, differential uplift is derived, which indicates a difference between west and east(with 754m on the western part and 219m on the east). Comprehensive comparison and analysis show that the lithologic factors and precipitation conditions are less influencing on the geomorphic factors of the study area, and the tectonic activities, indicated by field investigation and GPS inversion, are the most important element for geomorphic evolution and development. The variation of the geomorphologic indexes indicates different tectonic strength derived from regional structures of the Qilian Shan.

Reference | Related Articles | Metrics
GEOMORPHIC FEATURES OF THE SHULE RIVER DRAINAGE BASIN IN QILIANSHAN AND ITS INSIGHT INTO TECTONIC IMPLICATIONS
SU Qi, YUAN Dao-yang, XIE Hong, SHAO Yan-xiu, LIANG Ming-jian1. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China;
2. Lanzhou National Observatory of Geophysic
SEISMOLOGY AND GEOLOGY    2016, 38 (2): 240-258.   DOI: 10.3969/j.issn.0253-4967.2016.02.002
Abstract609)      PDF(pc) (5659KB)(187)       Save
Because of the strong uplift of the Qilian Shan since late Cenozoic,the drainage basins that are derived from the mountains have undergone strong tectonic deformation.So the typical geomorphology characteristics of these drainage basins may indicate the strong tectonic movement in the region.For example,the Shule River drainage basin,which originates from the western part of the Qilian Shan owns unique geomorphology characteristics which may indicate the neotectonic movement.
Stream networks of the Shule drainage basin extracted from the DEM data based on GIS spatial analysis technology are graded into five levels using Strahler classification method.Four sub-catchments,numbered 1,2,3 and 4 are chosen for detailed analysis.Furthermore,the four sub-catchments,the hypsometric integral curves,Hack profiles,SL index and average slope of the Shule drainage basin are determined by GIS tools.In addition,we analyzed the slope spectrum of the Shule drainage basin.
The average elevation of the Shule drainage basin is very high,however,the slope of the drainage basin is very low,the gentle slope occupies so large area proportion that the slope spectrum shows a unimodal pattern and a peak value is in low slope region (0°~5°),so tectonic movement has a strong influence on the drainage basin.Under the intensive impact of the tectonic movement of the active fault and regional uplift,the hypsometric integral curve is sigmoid,revealing that the Shule drainage basin is in the mature stage.The Hack profile is on a convex,the longitudinal profile is best fitted by linear fitting and the abnormal data of the SL index of the Shule River has a good fit with the section through which the active fault traverses,that means the tectonic movement of the active fault has strong influence on the river's SL index.It is worth noting that lithologic factors also have great impact on the river geomorphology in some sections.
According to the above analysis,we recognize that in the interior of active orogen,the evolution of river geomorphology usually is influenced by tectonic movement and reveals the regional neotectonics in turn.
Reference | Related Articles | Metrics
TEXTUAL RESEARCH OF LUQU EARTHQUAKE IN 842 AD IN GANSU PROVINCE AND ANALYSIS OF ITS CAUSATIVE STRUCTURE
YUAN Dao-yang, LEI Zhong-sheng, LIU Xing-wang, XIE Hong, SU Qi
SEISMOLOGY AND GEOLOGY    2014, 36 (3): 609-624.   DOI: 10.3969/j.issn.0253-4967.2014.03.006
Abstract790)      PDF(pc) (7467KB)(594)       Save

An earthquake with MS 6.6 occurred near the border between Minxian and Zhangxian counties in southeastern Gansu Province on July 22, 2013. This earthquake caused serious personnel casualties and property damages. According to the field investigation, the intensity of the epicenter area is about Ⅷ, the causative structure is a branch fault of the eastern segment of Lintan-Dangchang active fault.The southeastern region of Gansu Province is located at the eastern boundary of Tibetan active block. A series of strike-slip faults with thrust components are developed and their combination is complicated and a series of strong or even large earthquakes occurred in this area in the history and present-days, and one of them is the Luqu earthquake occurring in 842 AD at the boundary of Han and Tibet area(now the southeastern area of Gansu Province). The earthquake caused seismic rupture, spring gushing, landslip in the Minshan Mountains and countercurrent of the Taohe River for three days. According to the detail textual research of historical references and field investigation, the epicenter area of this earthquake locates at the Guanggaishan-Dieshan mountain area, at the border area between Luqu County, Zhuoni County and Diebu County in the Gannan Tibetan Autonomous Prefecture. The date of the Luqu earthquake is possibly on the 24th day of the twelfth month of the second year of Huichang Reign in Tang Dynasty, that is, on January 31 or 27, 843 AD, and the magnitude of this earthquake is about 7~7 1/2 , the intensity near the epicenter area is about nine to ten. There are three late Quaternary active fault zones of thrust with left-lateral components, namely, Lintan-Dangcang Fault, Guanggaishan-Dieshan Fault and Diebu-Bailongjiang Fault. According to the comparative analysis of the field investigation of active faults in recent years and present seismic activity, we think that Luqu earthquake is the result of new activity of Guanggaishan-Dieshan Fault, the causative fault of this earthquake. This fault is an important branch fault of the eastern segment of northern boundary faults of Bayan Har block(Eastern Kunlun Fault zone), a main activity area of large earthquakes with magnitude larger than 7 in Chinese continent in the recent 10 years, and has the tectonic condition to generate M≥7 large earthquakes.

Reference | Related Articles | Metrics