The southern Alashan block is located at the crustal front of the northern Tibetan plateau. It was initially considered as a relatively stable area with weak tectonic activity. In recent years, an increasing number of studies have shown that the Alashan block has undergone significant tectonic deformation since the Cenozoic. Multiple active faults with a horse-tail distribution are developed in the southern margin of the Alashan block. However, there is still controversy over the tectonic deformation patterns of these active faults. One view is that the fault system in the southern margin of Alashan is the result of the eastward extension of the Altyn Tagh Fault and belongs to the tail structure of the strike-slip fault. Another view is that the fault system in the southern Alashan block is the result of the revival of the pre-existing fault caused by the northward compression and thrust of the Tibetan plateau. Therefore, deciphering fault’s kinematics and slip rates since the late Quaternary in the southern Alashan block is crucial to understand the tectonic deformation pattern of the block and its response to Tibet’s northward growth. In this paper, combined with interpretations of remote sensing images and field investigations, we documented the Quaternary activity of the Beida Shan Fault, one of the major faults in the southern Alashan block, along the segment developed in Quaternary alluvium.
The Beida Shan Fault is a sinistral strike-slip fault with paralleled north and south branches that displaced the late Quaternary alluvial fans and terraces, forming offset gullies and fault scarps. According to the geometric distribution characteristics, activity and the landforms along the fault, we divided the fault into three segments: the Langwa Shan segment, the northern branch of the Jiapiquan Shan segment, and the southern branch of the Jiapiquan Shan segment. The fault is east-west trending, and the offset geomorphic features along the fault reveal that there are differences in the activity of different segments. The Langwa Shan segment is 10km long and developed at the junction of bedrock and alluvial fan. The fault trace is straight, and a series of gullies and ridges offset by the fault indicate that it is a sinistral strike-slip fault. The Jiapiquan Shan segment is 35km long and divided into two parallel north and south branches with a spacing of about 1.5km. The north branch fault strikes NE on the east side of Langwa Shan and has an angle of about 30° with the south branch fault. After extending about 2km to the northeast direction and entering the north side of Dahong Shan, the fault turns to the EW direction and is parallel to the south branch fault. It is distributed along the boundary between the bedrock and the alluvial fan with the south or north fault scarps and the secondary branch faults. To the east, the north branch fault is developed in bedrock, which is mainly characterized by offset gullies and ridges. The southern branch fault offset multi-stage alluvial fan, forming fault scarps of different heights and left-lateral offset gullies of different scales, and the exposed fault profiles show high angle reverse faults, which dip south or north, indicating that this segment is sinistral strike-slip.
Based on the 1.5m resolution DEM data obtained from UAV-SfM, we measured the horizontal displacement of fault landforms using the LaDiCaoZ software developed by Zielke et al.(2012) on the MATLAB platform. Combined with field survey data, we obtained the left-lateral horizontal displacements of 70 sites along the Beida Shan Fault. The sinistral offset of~1m is not included in slip distribution statistics due to limitations of the quantity and data accuracy. Statistical analysis of the displacements reveals that the left-lateral displacements along the fault are concentrated between 3m to 20m, with the majority in two pronounced peaks at 5.3m and 10.1m. The 5.3m peak contains the most data points, with 17 displacements data, accounting for 24% of the total, while the 10.1m peak contains 6 data points, accounting for 9% of the total. This indicates that the Beida Shan Fault has experienced multiple seismic events involving the displacement and rupture of stratigraphic layers on the surface.
An~8km-long surface rupture is discovered on the south fault branch, and it is represented by of fault scarps and of tens of centimeters 1~2m left-lateral displacement of small gullies. Fresh surface rupture and left-lateral offset gullies indicate the latest fault activity. Using the previously dated alluvial fan ages in Taohuala Shan, ~30km south of the Beida Shan, we calculated the late Pleistocene sinistral slip rate of 0.3~0.6mm/a along the Beida Shan Fault, which is consistent with the slip rate of the Taohuala Shan Fault estimated by Yu et al.(2017). Compared with the fault slip rate accommodated in the Hexi Corridor area and regional GPS rates, the southern Alashan block plays a significant role in absorbing deformation in response to the northern Tibetan growth.
The Fodongmiao-Hongyazi Fault belongs to the forward thrust fault of the middle segment of northern Qilian Shan overthrust fault zone, and it is also the boundary between the Qilian Shan and Jiudong Basin. Accurately-constrained fault slip rate is crucial for understanding the present-day tectonic deformation mechanism and regional seismic hazard in Tibet plateau. In this paper, we focus on the Shiyangjuan site in the western section of the fault and the Fenglehe site in the middle part of the fault. Combining geomorphic mapping, topographic surveys of the deformed terrace surfaces, optically stimulated luminescence (OSL) dating, terrestrial cosmogenic nuclide dating and radiocarbon (14C) dating methods, we obtained the average vertical slip rate and shortening rate of the fault, which are ~1.1mm/a and 0.9~1.3mm/a, respectively. In addition, decadal GPS velocity profile across the Qilian Shan and Jiudong Basin shows a basin shortening rate of~1.4mm/a, which is consistent with geological shortening rates. Blind fault or other structural deformation in the Jiudong Basin may accommodate part of crustal shortening. Overall crustal shortening rate of the Jiudong Basin accounts for about 1/5 of shortening rate of the Qilian Shan. The seismic activity of the forward thrust zone of Tibetan plateau propagating northeastward is still high.
With the development of the techniques acquiring high-resolution digital terrain data,the digital terrain data acquisition technology has been widespread applied to the geoscience research.A revolutionary,low-cost and simply operative SfM (Structure from Motion) technology will make obtain high-resolution DEM data more convenient for researches on active tectonics.This paper summarizes the basic principles and workflows of SfM technology and processes and selects the Hongshuiba River area along the northern margin of the Qilian Shan to conduct data collection.We use a series of digital pictures to produce a texture with geographic information,in which data resolution is 6.73cm/pix and average density of point cloud is 220.667 point/m2.The coverage area is 0.286km2.Further,in order to compare the accuracy between SfM data and differential GPS (DGPS) data in details,SfM data are vertically shifted and tilt-corrected.After optimizing corrections of SfM data,the absolute value of elevation difference between two data substantially concentrates around 20cm,roughly equivalent to 2-folds of data error only after the elevation error correction.Elevation difference between two data is 10~15cm in 90% confidence interval.The maximum error is about 30cm,but accounts for less than 10%.Along the direction of fault trace,the height of fault scarp extracted from SfM data shows that vertical displacement of the latest tectonic activity in the east bank of Hongshuiba River is about 1m,and some minimum scarps height may be 0.3m.The results show SfM technology with high vertical accuracy can be able to replace differential GPS in high-precision topographic survey.After correcting of SfM data,elevation difference still exists,which may be associated with methods of generating DEM and SfM data accuracy,which in turn is controlled by the number and distribution of Ground Control Points (GCPs),photos density and camera shooting height,but also related to surface features,Fodongmiao-Hongyazi Fault
Based on geological and geomorphologic characteristics of the surface faults acquired by field investigations and subsurface structure from petroleum seismic profiles, this paper analyzes the distribution, activity and formation mechanism of the surface faults in the east segment of Qiulitage anticline belt which lies east of the Yanshuigou River and consists of two sub-anticlines:Kuchetawu anticline and east Qiulitage anticline. The fault lying in the core of Kuchetawu anticline is an extension branch of the detachment fault developed in Paleogene salt layer, and evidence shows it is a late Pleistocene fault. The faults developed in the fold hinge in front of the Kuchetawu anticline in a parallel group and having a discontinuous distribution are fold-accommodation faults controlled by local compressive stress. However, trenching confirms that these fold-accommodation faults have been active since the late Holocene and have recorded part of paleoearthquakes in the active folding zone. The fault developed in the south limb near the core of eastern Qiulitage anticline is a low-angle thrust fault, likely a branch of the upper ramp which controls the development of the eastern Qiulitage anticline. The faults lying in the south limb of eastern Qiulitage anticline are shear-thrust faults, which are developed in the steeply dipping frontal limb of the fault-propagation folds, and also characterized by group occurrence and discontinuous distribution. Several fault outcrops are discovered near Gekuluke, in which the Holocene diluvial fans are dislocated by these faults, and trench shows they have recorded several paleoearthquakes. The surface anticlines of rapid growth and associated accommodation faults are the manifestations of the deep faults that experienced complex folding deformation and propagated upward to the near surface, serving as an indicator of faulting at depth. The fold-accommodation faults are merely local deformation during the folding process, which are indirectly related with the deep faults that control the growth of folds. The displacement and slip rate of these surface faults cannot match the kinematics parameters of the deeper fault, which controls the development of the active folding. However, these active fold-accommodation faults can partly record paleoearthquakes taking place in the active folding zone.
How strain is distributed and partitioned on individual faults and folds on the margins of intermontane basins remains poorly understood. The Haermodun(Ha) anticline, located along the northern margin of the Yanqi Basin on the southeastern flank of the Tian Shan, preserves flights of passively deformed alluvial terraces. These terraces cross the active anticline and can be used to constrain local crustal shortening and uplift rates. Geologic and geomorphic mapping, in conjunction with high-resolution dGPS topographic surveys, reveal that the terrace surfaces are perpendicular to the fold's strike, and display increased rotation with age, implying that the anticline has grown by progressive limb rotation. We combine 10Be terrestrial cosmogenic nuclide(TCN) depth profile dating and optically stimulated luminescence(OSL) dating to develop a new chronology for the terraces along the Huangshui He since 550ka. Our in situ 10Be dating of fluvial gravels capping strath terraces suggests a relationship between the formation and abandonment of the terraces and glacial climate cycles since the middle-late Pleistocene. These data indicate that the formation of the four terraces occurred at ~550, ~430, ~350, and~60ka. We suggest that episodes of aggradation were facilitated by high sediment supply during glacial periods, followed by subsequent incision that led to abandonment of these terraces during deglaciation. Combining uplift and shortening distance with ages, we found the vertical uplift gradually decreased from 0.43 to 0.11mm/a, whereas the shortening rate was constant at ~0.3mm/a since the anticline began to grow. The shortening rates of the Ha anticline from geomorphology agree with current GPS measurements, and highlight the importance of determining slip rates for individual faults in order to resolve patterns of strain distribution across intermontane belts.