Statistical study of earthquakes in the past, due to the small-medium size magnitude earthquake associated with surface rupture are rare, considers that only the earthquakes beyond magnitude 6 1/2 could produce surface ruptures in the most cases. Identification of paleoseismic events is also often based on this assumption. In this paper, we summarized 56 historical moderate size earthquakes worldwide, which have clearly documented about surface ruptures from 1950 to 2014.Results show that the magnitude lowest limit of the earthquake associated with surface rupture may be lower than the 6 1/2 , probably is about 5, even can be as low as 3.6 under extreme conditions. Additionally, from the view of theory and practice, this paper explored the effect of control factors on surface rupture, so as to indicate that the shallow focal depth is one of the most important factors for small-medium size earthquake associated with surface rupture, also included are the high heat flow values, tensile tectonic environment and active fault with weak friction strength. Although the probability that small magnitude earthquake produces surface rupture is low, it is not impossible. In the interpretation of paleoearthquake events, it also cannot overgeneralize that the corresponding earthquake magnitude must be 6.5 or greater as long as the fracture appeared, while ignoring the possibility of some moderate size earthquakes.
Terrestrial in situ cosmogenic nuclides burial dating has a promising application in dating of late Cenozoic detrital sediments,for example,cave sediments,fluvial sediments and moraine.This method relies on a pair of cosmic-ray-produced nuclides that are produced in the same rock or mineral target at a fixed ratio,but have different half-lives.For example, 26 Al and 10 Be are produced in quartz at 26 Al :10 Be=6.75 :1.The ratio is not affected by latitude and altitude.After sediments are buried,the ratio would become less as time goes.Therefore, 26 Al/10 Be ratio can be used as a geological clock.The dating range can be from several hundreds of thousand years to five million years.In this article,we introduce four methods and their applications: exposure-burial diagram method,depth profile method,isochron method, 26 Al-21 Ne and 10 Be-21 Ne method.Exposure-burial diagram method is often applied to cave sediments dating, for exposure-burial history of cave deposits is easy.Depth profile method is applied to fluvial sediments dating.There is a good application for isochron approach in till-paleosol sequences in North America. 26 Al-21 Ne and 10 Be-21 Ne method has a great potential applicaton in future for its larger dating time and less uncertainty than other methods.The dating method still has many problems.Firstly,there are no exact half-lives.For example,there is still controversy for 10 Be half-life.Its estimate is 1.51±0.06Ma or 1.36±0.07Ma.Secondly,it is also a debate how to determine nuclides' production rates.In addition,post-burial or preburial erosion rate,inheritance nuclides concentration,post-burial nuclide production,effect of post-burial or preburial muonic production,sediment rework,complicated exposure-burial history of sediments all bring great challenges to cosmogenic nuclides dating.
Based on the interpretation of satellite images,combined with field geomorphic and tectonic investigations and surveys,we get the parameters of surface rupture zones of the 1895 Tashkorgan earthquake,such as the geometry,the types of rupture,the displacements and their distribution and so on.And on these grounds,we estimate the possible magnitude,the epicenter and seismogenic fault of this earthquake.The south segment of Muztag Fault and the whole Taheman Fault were ruptured by the Tashkorgan earthquake.The length of the surface rupture zone is 27km.The rupture zone strikes NNE,and it changes from N25°W in the north to N25°E in the south segment.The surface rupture zone is composed of consequent or obsequent normal fault scarps,represented by horst,graben,and step-like structure on the profile,and distributed in patterns as en echelon,parallel,convergent and parallel cross shaped and so on in the plane.The surface ruptures are dominated by pure dip-slip,with little lateral displacement.The general width of these overlapping surficial fault rupture strands is ca.30~60m, and the largest may come to 825m.The largest co-seismic displacement of a single scarp is 4.2±0.2m. The surface ruptures are composed of three independent secondary segments.The seismogenic fault of this earthquake is Taheman Fault.The south segment of Muztag Fault was also ruptured.Moreover,we find a younger fault scarp which may be induced by the 1895 earthquake in the small basin between the two above-mentioned faults.
The northern margin of the Pamir salient indented northward by ~300km during the late Cenozoic,however,the spatiotemporal evolution of this process is still poorly constrained.Regional deformation within the Pamir salient is asymmetric.Previous work has shown that deformation along the western flank of the Pamir was accommodated by northwest-directed radial thrusting and associated anticlockwise vertical axis rotation of the Pamir over the eastern margin of the Tajik Basin,along with a component of left-slip faulting along the Darvaz Fault.In contrast,subduction of the Tajik-Tarim Basin beneath the Pamir along the MPT was absorbed along the eastern margin of the salient by dextral-slip along the Kashgar-Yecheng transfer system,accompanied with Oligocene-Miocene northward underthrusting, thickening and widespread melting of the middle and lower crust beneath the Pamir,eventually led to east-west extension along the Kongur Shan extensional system at ~7~8Ma.The slip rate of the KYTS decreased substantially from 11~15mm/a to 1.7~5.3mm/a since at least 3~5Ma,termination of slip along the northern segment of the Karakorum Fault occurred almost at the same time.Late Quaternary and present active deformation in the Pamir is dominated by east-west extension along the Kongur Shan extensional system and north-south contraction along the PFT and the Atux-Kashi fold belts in the southern margin of Tianshan.