Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
STUDY ON THE SEISMOGENIC STRUCTURE OF THE 2022 GUJIAO ML4.1 EARTHQUAKE IN SHANXI PROVINCE BASED ON FOCAL MECHANISM AND SEISMIC LOCATION
DONG Chun-li, ZHANG Guang-wei, LI Xin-wei, WANG Yue-jie, DING Da-ye, GONG Zhuo-hong
SEISMOLOGY AND GEOLOGY    2024, 46 (2): 414-432.   DOI: 10.3969/j.issn.0253-4967.2024.02.010
Abstract559)   HTML20)    PDF(pc) (4880KB)(490)       Save

Understanding the mechanism of earthquake sequence in the mining area is important for the time-dependent hazard assessment. An earthquake of ML4.1 occurred in Gujiao, Taiyuan, Shanxi on February 20th, 2022, which caused strong ground motion in Gujiao and surrounding counties. The epicenter of this earthquake is located in the area of Lvliang uplift, where historical earthquakes are relatively rare. In addition, the coal resources are well developed in the earthquake source area which has attracted much attention from society and local governments.

To investigate the mechanism and the seismogenic fault of Gujiao ML4.1 earthquake, we first apply the double-difference location method to retrieve highly accurate hypocenter locations. The results show that the earthquakes mainly occur at a depth range of 3~5km, and display a dominant distribution direction nearly EW-trending, which differs significantly from the NE-trending fault distribution pattern in this region. We further collect the broad-band seismic waveforms from the regional network of Shanxi province to perform focal mechanism inversion. The inversion results show that the Gujiao earthquake is a left-slip seismic event with a moment magnitude of MW3.96. The optimal double-couple solution is characterized by a strike of 90°, dip of 80°, and a rake angle of -21° for fault plane Ⅰ, while for the fault plane Ⅱ, the strike is 184°, dip is 69°, and rake angle is -169°. The best centroid depth is estimated to be at 3km. This earthquake shows an extremely shallow focal depth. Moreover, By using cluster analysis method, we obtained the central solution for the seismogenic fault plane of the GuJiao earthquake, with a fault strike of 91°and a dip angle of 70°. The focal solutions show that the earthquake exhibit a strike-slip type, and the orientations of earthquake sequence coincide well with the focal mechanisms.

In addition, to discuss the effect of Gujiao ML4.1 earthquake on regional stress, we calculate the stress drop of this seismic sequence. The results show that the stress drop is significantly smaller than that of the regional earthquakes, exhibiting at least one order of magnitude lower than that of the background earthquakes in the same region. This phenomenon reflects that the stress level in the focal area of the GuJiao earthquake is not high, suggesting that the background stress enhancement in the focal area is not obvious.

Based on regional geological structure, we found that the known faults in the region are all high-angle normal faults, and the strike of these faults are inconsistent with the focal mechanism solution of Gujiao earthquake sequence, which suggests that the existing faults are not the seismogenic fault. Taking the regional mining activities into account, we speculated that mining may cause strong disturbance to the stress field, and lead to stress redistribution within the rock mass. Such coal mining activity may generate a high stress disturbance on the hidden fault plane, and then the fault become the carrier of stress transfer. So we conclude that the seismogenic mechanism of the Gujiao-seismic sequence may be related to coal mining activities near the focal area, which leads to local stress changes, thus resulting in the activation of preexisting hidden faults and triggering the occurrence of the Gujiao earthquake.

Table and Figures | Reference | Related Articles | Metrics
GEOMETRIC COMPLEXITY OF FAULT SYSTEM IN THE SOURCE REGION OF THE 2021 YANGBI, YUNNAN, MS6.4 EARTHQUAKE
LIANG Shan-shan, XU Zhi-guo, ZHANG Guang-wei, ZOU Li-ye, LIU Yan-qiong, GUO Tie-long
SEISMOLOGY AND EGOLOGY    2021, 43 (4): 827-846.   DOI: 10.3969/j.issn.0253-4967.2021.04.006
Abstract764)   HTML34)    PDF(pc) (8044KB)(305)       Save

Earthquake relocation and focal mechanism inversion can provide seismogenic structure information, especially in the source area without obvious fault trace on the surface, and further reveal the deep geometry of hidden faults. The Yangbi MS6.4 earthquake sequence recorded by Yunnan regional seismic network from May 18 to June 4, 2021 is relocated by using the double-difference location method. A total of 3 233 events, from 4 days before and 14 days after the main shock, are relocated and the b-value in the Yangbi source region is calculated accordinly. Then, using the waveform data recorded by the Yunnan and Sichuan regional broadband seismic stations, the full moment tensor solutions of 10 earthquakes (M≥4.0), including the main earthquake, are obtained using the near-field full waveform inversion method, and further the tectonic stress field is retrieved. The high-precision relocation of earthquakes shows that there are significant differences between the foreshocks and the aftershocks in the tempo-spatial distribution. The foreshocks are primarily in a belt-like distribution along the NW-SE direction, whose epicenters are in a back-and-forth migration. The aftershocks mainly occurred on asymmetric conjugate faults along NW and NE directions, and multi-groups of aftershocks with different strikes were distributed in the south end of the NW-striking seismic zone, implying the complexity of the medium and fault geometry in the focal area. The temporal distribution of the b-value shows that the b-value has a rising trend before the main earthquake, indicating that the stress accumulation in the source area had begun to release gradually at that time, which may be related to the fact that the sequence is of the foreshock-mainshock-aftershock type. After the main shock, the variation range of b-value is large, which may reflect very strong seismicity of the aftershocks and large release of the stress. The focal mechanism solutions show that the moderate earthquakes are mainly of strike-slip with a normal component and a significant non-double-couple component, which may indicate the staggered distribution of the NW- and NE-trending faults in the source region, and the earthquake rupture is not simply the slip along the fault plane. Taking into account for the above-mentioned results as well as the compressional stress field environment in nearly NS direction and the extensional environment in nearly EW direction, the seismogenic structure of Yangbi MS6.4 earthquake is a dextral strike-slip fault, NW striking with a high-dip angle, located in the Baoshan block, which may be a secondary fault parallel to the Weixi-Qiaohou-Weishan Fault and including multi-fault branches in NE direction in the southern segment. The tempo-spatial distribution characteristics of the earthquake sequence and the diversity of the fault plane rupture are controlled by the geometric complexity of fault system in the focal area.

Reference | Related Articles | Metrics
FOCAL MECHANISM SOLUTIONS AND STRESS FIELD OF THE 2019 CHANGNING, SICHUAN MAINSHOCK AND ITS MODERATE-STRONG AFTERSHOCKS(MS≥4.0)
LIANG Shan-shan, XU Zhi-guo, SHENG Shu-zhong, ZHANG Guang-wei, ZHAO-Bo, ZOU Li-ye
SEISMOLOGY AND GEOLOGY    2020, 42 (3): 547-561.   DOI: 10.3969/j.issn.0253-4967.2020.03.001
Abstract817)   HTML    PDF(pc) (3702KB)(502)       Save
A MS6.0 earthquake with shallow focal depth of 16km struck Changning County, Yibin City, Sichuan Province at 22:55: 43(Beijing Time)on 17 June 2019. Although the magnitude of the earthquake is moderate, it caused heavy casualties and property losses to Changning County and its surrounding areas. In the following week, a series of aftershocks with MS≥4.0 occurred in the epicentral area successively. In order to better understand and analyze the seismotectonic structure and generation mechanism of these earthquakes, in this paper, absolute earthquake location by HYPOINVERSE 2000 method is conducted to relocate the main shock of MS6.0 in Changning using the seismic phase observation data provided by Sichuan Earthquake Administration, and focal mechanism solutions for Changning MS6.0 main shock and MS≥4.0 aftershocks are inferred using the gCAP method with the local and regional broadband station waveforms recorded by the regional seismic networks of Sichuan Province, Yunnan Province, Chongqing Municipality, and Guizhou Province. The absolute relocation results show that the epicenter of the main shock is located at 28.35°N, 104.88°E, and it occurred at an unusual shallow depth about only 6.98km, which could be one of the most significant reasons for the heavier damage in the Changning and adjoining areas. The focal plane solution of the Changning MS6.0 earthquake indicates that the main shock occurred at a thrust fault with a left-lateral strike-slip component. The full moment tensor solution provided by gCAP shows that it contains a certain percentage of non-double couple components. After the occurrence of the main shock, a series of medium and strong aftershocks with MS≥4.0 occurred continuously along the northwestern direction, the fault plane solutions for those aftershocks show mostly strike-slip and thrust fault-type. It is found that the mode of focal mechanism has an obvious characteristic of segmentation in space, which reflects the complexity of the dislocation process of the seismogenic fault. It also shows that the Changning earthquake sequences occurred in the shallow part of the upper crust. Combining with the results from the seismic sounding profile in Changning anticline, which is the main structure in the focal area, this study finds that the existence of several steep secondary faults in the core of Changning anticline is an important reason for the diversity of focal mechanism of aftershock sequences. The characteristics of regional stress field is estimated using the STRESSINVERSE method by the information of focal mechanism solutions from our study, and the results show that the Changning area is subject to a NEE oriented maximum principal stress field with a very shallow dipping and near-vertical minimum principal stress, which is not associated with the results derived from other stress indicators. Compared with the direction of the maximum principal compressive stress axis in the whole region, the direction of the stress field in the focal area rotates from the NWW direction to the NEE direction. The Changning MS6.0 earthquake locates in the area with complex geological structure, where there are a large number of small staggered fault zones with unstable geological structure. Combining with the direction of aftershocks distribution in Changning area, we infer that the Changning MS6.0 earthquake is generated by rupturing of the pre-existing fault in the Changning anticline under the action of the overall large stress field, and the seismogenic fault is a high dip-angle thrust fault with left-lateral strike-slip component, trending NW.
Reference | Related Articles | Metrics
MECHANISM OF THE 2015 PISHAN, XINJIANG, MS6.5 MAINSHOCK AND RELOCATION OF ITS AFTERSHOCK SEQUENCES
ZHANG Guang-wei, ZHANG Hong-yan, SUN Chang-qing
SEISMOLOGY AND GEOLOGY    2016, 38 (3): 711-720.   DOI: 10.3969/j.issn.0253-4967.2016.03.016
Abstract851)      PDF(pc) (3500KB)(519)       Save

Using the digital broadband seismic data recorded by Xinjiang network stations, we obtained focal mechanism of the July 3 Pishan, Xinjiang, MS6.5 earthquake with generalized Cut and Paste(gCAP)inversion method. The strike, dip and rake of first nodal plane are 97°, 27°, 51°, and the second nodal plane are 318°, 70°, 107°. The centroid depth and moment magnitude are calculated to be 12km and 6.4. Combining with the distribution of aftershocks, we conclude that the first nodal plane is the seismogenic fault, and the main shock presents a thrust earthquake at low angle. We relocated 1014 earthquakes using the double-difference algorithm, and finally obtained 937 relocated events. Our results show that the earthquake sequences clearly demonstrate a unilateral extension about 50km nearly in NWW direction, and are mainly located above 25km depth, especially the small earthquakes are predominately located at the shallow parts. Furthermore, the focal depth profile shows a southwestward dipping fault plane at the main shock position, suggesting listric thrust faulting, which is consistent with the dip of the mainshock rupture plane. The spatial distribution of aftershocks represents that the Tarim block was thrust under the West Kunlun orogenic belt. In addition, the dip angle of the fault plane gradually increases along the NWW direction, possibly suggesting a gradual increase of strike-slip component during the NWW rupturing process. From above, we conclude that the Pishan MS6.5 earthquake is the result of Tibet plateau pushing onto the Tarim block from south to north, which further confirms that the continuous collision of India plate and Eurasia plate has strong influence on the seismic activity in and around the Tibet plateau.

Reference | Related Articles | Metrics
REGIONAL CHARACTERISTICS OF WAVE VELOCITY RATIO IN JILIN AREA AND THEIR TECTONIC IMPLICATIONS
ZHANG Hong-yan, ZHANG Guang-wei, WANG Xiao-shan, ZHANG Chen-xia, KANG Jian-hong
SEISMOLOGY AND GEOLOGY    2015, 37 (3): 829-839.   DOI: 10.3969/j.issn.0253-4967.2015.03.013
Abstract482)      PDF(pc) (4523KB)(657)       Save

Using the analog and digital P and S wave data of 254 events from January 2001 to June 2013, we obtained the wave velocity ratio with the multi-station method and got the mean value for every earthquake. This study analyzes the spatial variation of the wave velocity ratios of Jilin area. To ensure the accuracy and stability of the calculated results, we carefully winnow the collected data and the calculated results. Our results show that there are strong lateral heterogeneity and difference between the south and north of Jilin area. The wave velocity ratio in the north part of Yitong-Shulan Fault shows strong lateral heterogeneity, the orientation of anomaly area for high and low wave velocity is in accordance with the NE-trending Fuyu-Zhaodong Fault; The high wave velocity ratio areas in the south part of Yitong-Shulan Fault mainly concentrate in the volcanic region, the wave velocity ratio in the southwest is little higher than that in the north part of Changbai Mountains volcanoes, suggesting that the low velocity abnormal body maybe locates in the southwest under Changbai Mountains, The study suggests that the high value zone and the transitional zone of high to low value are earthquake-prone zone by analyzing the distribution characteristic of wave velocity ratio and the earthquake activity.

Reference | Related Articles | Metrics