The eastern marginal fault of Daxing Uplift is located in the southeast of the Beijing Plain, which is a boundary fault that controls the Daxing Uplift and the Langgu Sag. It intersects obliquely with the NNE-trending Xiadian Fault in the north where a magnitude 8 earthquake occurred in 1679. The overall strike of the fault is northeast, dipping southeast. Previous studies have suggested that the youngest stratum of the fault is the Mid Pleistocene of the Quaternary and it is not an active fault since the Late Quaternary. Based on high-precision shallow seismic exploration data, this study carried out high-density composite drilling geological section surveys and obtained evidence of obvious activity of the fault since the Late Quaternary. The fault is shown as an active normal fault in the composite drilling geological section. The top of the footwall of the fault is the 7m-thick silty clay marker layer buried at the depth of 74m and the top of the hanging wall is 102m deep, the amount of dislocation is about 28.0m. Fault slip surfaces were found in the cores of two of the boreholes, with depths of 54.2m and 39.4m, respectively. The buried depths of the top surface of the marker layer in the two boreholes with a horizontal distance of 2m are 8m and 10m, respectively, the dislocation amount is 2m. Combined with the observation of core deformation characteristics of the two boreholes, it is believed that the buried depth of the upper breakpoint of the fault may be shallower. This research has changed the understanding that the fault zone on the eastern margin of the Daxing Uplift is not active. This new discovery not only has great application value for understanding the risk of large earthquakes of this fault zone and the risk of earthquake disasters in Beijing, but also has scientific significance for the study of fault development and evolution and the deep-shallow coupling process in North China since the late Cenozoic. The main knowledge gained is as follows: 1)Through high-precision shallow seismic exploration, it is found that the Neogene and above strata in the study area generally show an inclined morphology which is deep in the south and shallow in the north. The strata below the Neogene are in angular unconformity contact with the bottom interface of the Neogene, and the depth of the shallowest upper breakpoint is about 38~43m. 2)The combined drilling geological section exploration reveals rich dislocation information of stratigraphic markers and further confirms the existence of active faults by borehole stratigraphic correlation. In the drill cores, fault slip surfaces were observed in the late Pleistocene strata at the depth of 39.4m, 51.5m and 54.2m, respectively. The stratigraphic comparison of the boreholes 5# and 9# with a hole spacing of 2m further reveals a fault throw of about 2m in the stratum at the buried depth of 8~10m, thus, it is inferred that the depth of the upper breakpoint on the fault may be 8m or shallower. According to the stratigraphic age data of adjacent boreholes in this area, it is considered that the fault is a Holocene active fault. The specific age of the latest activity and its activity parameters will be further studied through the subsequent borehole chronological tests and large-scale trench excavation.
After the Fukushima nuclear accident caused by the “3·11” earthquake tsunami in Japan, whether the coastal nuclear power stations in China are liable to similar earthquake tsunami impact has been widely concerned by the whole society. According to the previous results of earthquake tsunami impact assessment conducted by professional departments on coastal nuclear power plants, China's coastal areas do not have the conditions for the occurrence of large-scale earthquake tsunami, but in order to fully learn from the experience and lessons of the Fukushima nuclear accident caused by Japan's “3·11” earthquake tsunami, definite conclusions have been drawn on the offshore tsunami and its impact on nuclear power plants in the early assessment work of potential tsunami impact of coastal nuclear power stations in China, combined with the structural background, historical seismic data and tsunami impact analysis. However, whether the earthquakes in the Ryukyu trench, Manila trench and other areas can generate tsunami has not been systematically considered. Therefore, in this paper, the seismogenic capacity of the Ryukyu trench and Manila trench is evaluated based on the seismotectonic background and relevant seismic source parameters. Both Ryukyu and Manila trench belong to the west Pacific plate subduction zone, while the Japan's “3·11”earthquake is also located in the west Pacific plate subduction zone. Therefore, whether the former has the same tectonic background and conditions as the “3·11” earthquake does is the key factor to assess whether the Ryukyu trench and Manila trench have the same potential for M9 earthquake. Based on the analysis of a large number of data, this paper evaluates the tectonic background, segmentation characteristics and maximum potential earthquake generating capacity of the Ryukyu trench and the Manila trench. The Ryukyu trench and Manila trench are located in the west of the Philippine Sea plate. There are also subduction zones distributing in the east of the Philippine Sea plate from Izu-Ogasawara trench, Mariana trench to Yap Palau-Ayu trench. Since the Ryukyu trench-Manila trench subduction zones are not in the direct contact zone between the Pacific plate and the Eurasian plate, the plate tectonic setting is obviously different from the low-angle subduction zone where the Japan's March 11 earthquake locates. From the perspective of tectonic system, the Ryukyu trench belongs to the subduction tectonic system of trench-island arc-back arc basin. The island arc and trench are retreating eastward, showing the characteristics of weak coupling. The overall scale of the Manila trench is small, and affected by the “slab window” in the subduction slab formed by the ancient spreading ridge, the length of these two trench zones is much smaller than that of the subduction zones where MW≥9 earthquakes have occurred. Based on the comprehensive analysis of the differences in trench structure, earthquake data and etc., the Ryukyu trench can be divided into 6 rupture segments, and the section of the Manila trench concerned in this study can also be divided into 6 rupture segments. At the same time, the possibility of combined rupture of the rupture segment is considered from a conservative standpoint. The rupture segments RL5 and RL6 of the Ryukyu trench, RM2 and RM3 of the Manila trench all have the possibility of combined rupture, and rupture segments RM4, RM5 and RM6 also have the possibility of combined rupture. To sum up, the comprehensive estimation result of the maximum potential earthquake in the subduction zone is magnitude 8.5 in the Ryukyu trench and magnitude 8.8 in the Manila trench.
The Yingkou-Weifang fault zone (YWFZ) is the part of the Tanlu fault zone across the Bohai Sea, and is also an important part of the tectonics of the eastern Bohai Bay Basin. Many studies have been carried out on the neo-tectonics and activities of the YWFZ in recent years. In this paper, the neo-tectonics and activities of the YWFZ, and other related issues were studied again, based on our previous work and results of other researchers. The neo-tectonic movement in the Bohai Sea area began in the late Miocene (12~10Ma BP), which originated from the local crust horizontal movement, the tectonic stress field is characterized by NEE-SWW and near E-W horizontal compression. The neo-tectonics of the YWFZ is represented mainly by Neogene-Quaternary deformation, due to rejuvenation of Paleogene faults. Many faults have developed. The neo-tectonics and activities of YWFZ have characteristics of segmentation and weakening, because of the development of the NE-trending Northwest Miao Island-the Yellow River Estuary fault zone, which crosses the YWFZ. Earthquakes in the east of Bohai Sea are distributed along the Northwest Miao Island-the Yellow River Estuary fault zone, only few and small earthquakes along the Liaodong Bay and the Laizhou Bay section of the YWFZ. We made a preliminary analysis of the mechanics for this phenomenon.
Motuo Fault locates at the east of Namjagbarwa Peak in eastern Himalayan syntaxis.Based on the remote sensing interpretation,the previous work,and with the field investigation,this paper obtains the spatial distribution and movement characteristics of Motuo Fault in China,and geological evidences of late Quaternary activity.Two trenches in Motuo village and Dongdi village located in Yalung Zangbo Grand Canyon reveal that the Motuo Fault dislocates the late Quternary stratum and behaves as a reverse fault in Motuo village and normal fault in Dongdi village.Motuo Fault is dominated by left-lateral strike-slip associated with the faulted landforms,with different characteristics of the tilting movement in different segments.The trench at Didong village reveals the latest stratum dislocated is~2780±30 a BP according to radiocarbon dating,implying that Motuo Fault has ruptured the ground surface since late Holocene.The movement of left-lateral strike-slip of Motuo Fault is related to the northward movement process of Indian pate.
The NE-trending Xinyi-Lianjiang fault zone is a tectonic belt, located in the interior of the Yunkai uplift in the west of Guangdong Province, clamping the Lianjiang synclinorium and consisting of the eastern branch and the western branch. The southwestern segment of the eastern branch of Xinyi-Lianjiang fault zone, about 34km long, extends from the north of Guanqiao, through Lianjiang, to the north of Hengshan. However, it is still unclear about whether the segment extends to Jiuzhoujiang alluvial plain or not, which is in the southwest of Hengshan. If it does, what is about its fault activity? According to ‘Catalogue of the Modern Earthquakes of China’, two moderately strong earthquakes with magnitude 6.0 and 6.5 struck the Lianjiang region in 1605 AD. So it is necessary to acquire the knowledge about the activity of the segment fault, which is probably the corresponding seismogenic structure of the two destructive earthquakes. And the study on the fault activity of the segment can boost the research on seismotectonics of moderately strong earthquakes in Southeast China. In order to obtain the understanding of the existence of the buried fault of the southwestern segment, shallow seismic exploration profiles and composite borehole sections have been conducted. The results indicate its existence. Two shallow seismic exploration profiles show that buried depth of the upper breakpoints and vertical throw of the buried fault are 60m and 4~7m(L5-1 and L5-2 segment, the Hengshan section), 85m and 5~8m(L5-3 segment), 73m and 3~5m(Tiantouzai section), respectively and all of them suggest the buried fault has offset the base of the Quaternary strata. Two composite borehole sections reveal that the depth of the upper breakpoints and vertical throws of the buried segment are about 66m and 7.5m(Hengshan section) and 75m and 5m(Tiantouzai section), respectively. The drilling geological section in Hengshan reveals that the width of the fault could be up to 27m. Chronology data of Quaternary strata in the two drilling sections, obtained by means of electron spin resonance(ESR), suggest that the latest activity age of the buried fault of the southwestern segment is from late of early Pleistocene(Tiantouzai section) to early stage of middle Pleistocene(Hengshan section). Slip rates, obtained by Hengshan section and Tiantouzai section, are 0.1mm/a and 0.013mm/a, respectively. As shown by the fault profile located in a bedrock exposed region in Shajing, there are at least two stages of fault gouge and near-horizontal striation on the fault surface, indicating that the latest activity of the southwestern segment is characterized by strike-slip movement. Chronology data suggest that the age of the gouge formed in the later stage is(348±49) ka.
The Yangjia Village-Yaodian segment of Weihe Fault, starting from Yangjia Village in the west, passing through Weijiaquan, Jinjiazhuang, Donger Village, Chenjiatai to Yaodian, occurs as a NE-striking fault dipping south with a total length of 33 kilometers. As a syn-depositional normal fault, it extends along the leading and trail edge of T1, T2 and T3 terrace at the northern bank of Weihe River. Results of remote sensing interpretation, shallow seismic exploration, exploratory trench, and drilling show that the Yangjia Village-Yaodian section of Weihe Fault manifests as fault scarps, overlapping with the NE-extending terrace scarp at the northern bank of Weihe River. Weihe Fault broke the T1 that can be distinguished on the shallow seismic profile and multiple profiles with broken signs from T1 to the ground, which is the same with the cracks through the Han Tomb at the top of the exploratory trench in Yangjia Village. It shows that the fault may still be active from the late Pleistocene to Holocene. Through composite drilling section and the analysis of exploratory trench, there is no significant difference in activity between the Yangjia Village-Jinjiazhuang and Donger Village-Yaodian section. This segment has experienced a large displacement event since (46.0±3.3)ka BP, approximately 11.0~16.5m, with a vertical slip rate of 0.34~0.45mm/a. The most recent activity occurred approximately around 2.0ka BP. The left-step en echelon fracture zone at Jingjiazhuang separates this section into two minor ones, Yangjia Village-Jinjiazhuang section and Donger Villag-Yaodian section. Yangjia Village-Yaodian section in Weihe Fault and Yaodian-Zhangjiawan section which was found out in the Xi'an active fault detection and seismic risk assessment project can be combined into the Yangjia Village-Zhangjiawan section.
Based on the data of 28 strike-slip fault steps and the surface rupture traces at home and abroad, the paper analyzes the relations between the step type, size and earthquake rupture by using the mathematical statistical method, and obtains the barriers yardsticks that stop rupture propagation of earthquakes with different magnitude intervals by using the method of statistical analysis. The results show that the limiting dimensions of strike-slip fault step are different for different magnitude intervals. The limiting dimension of step width is about 3km for magnitude between 6.5 to 6.9, 4km for magnitude between 7.0 to 7.5, 6km for magnitude between 7.5 to 8.0, and about 8km for magnitude between 8.0 to 8.5. The result implies that releasing steps should be easier to rupture through than restraining steps. The limiting dimension of step width determined in this paper is basis for rupture segmentation and is of practical importance to seismic hazard analysis.
The study area of this article covers the continental shelf of the East China Sea and the Okinawa Trough. Tectonically, the area is the seaward extension of the eastern China mainland, consisting of the East China Sea shelf basin, the Diaoyudao islands uplift-fold zone, and the Okinawa Trough Basin developed in Cenozoic. Lying at the conjunction between the Eurasian and Philippine plates, the neotectonic movement since Miocene and resultant geologic structure of this area are complicated and peculiar. Based on pervious data and studies, this paper makes a systematic and in-deep analysis to the features of the neotectonic movement in this region, involving geomorphology, geological structure, magma activity and earthquakes. Then, the dynamic conditions for the neotectonic movement of the study area are discussed. Neotectonic movement of East China Sea started from middle Miocene and the mechanism of the tectonic stress field changed from sinistral transtension to sinistral transpression. The neotectonic movement in this area is inhomogeneous, with the continental shelf basin inclining and subsiding slightly to the southeast, the Okinawa trough dominated mainly by crustal active rifting, and the Diaoyu Islands fold belt characterized by lateral compressive bending uplift. The active faults, mainly trending NNE and NE, are dominantly distributed in the continental shelf basin, especially in the Okinawa trough. Magmatism and earthquake activity are also mainly distributed in the east of the continental shelf basin, especially in the Okinawa trough. The neotectonic movement in East China Sea is co-influenced by the back arc mantle uplift which is caused by the subduction of the Philippine plate beneath the continental shelf of East China Sea and results in the NW-SE rifting of Okinawa trough, and the southeastward movement of South China block which is pushed by the lateral extrusion of eastern Tibet.
Seismogenic structure is the core of seismo-geology. The Bohai Bay Basin area in North China is highly active in terms of seismicity,where six earthquakes of M≥7.0 have occurred. After the 1966 M7.2 Xingtai event,some researchers suggested that the seismogenic structure of this earthquake was associated with the Cenozoic normal faults and the fault-depression basins the faults controls. In 1986,however,some authors proposed that this quake should be attributed to a high-angle fault beneath the basin. The purpose of this paper is to give a systematic elucidation on seismogenetic structures in the Bohai Bay Basin area,North China,which are built on the geological studies in combination with exploration to deep structures in the seismic areas. The paper analyzes and compares the geometric features and structural attributes as well as their dynamic conditions of the Bohai Bay Basin in two evolution stages,i.e.the Eogene when the fault-depression formed and mid Miocene(12~10Ma)when the neotectonics developed. It emphasizes the distinct dynamic conditions in these two stages that formed different structural systems. In the stage of fault-depression,this area was subject to extension in NW-SE direction,which produced many gentle normal faults in the shallow subsurface that characterized the fault-bounded depression basins. While in the neotectonic stage,a set of conjugate fault system consisting of NE-trending right-lateral slip-strike faults and NW-directed left-lateral strike-slip faults were generated by the NEE to approximately EW-orientated horizontal compressional stresses. The structure of the first stage was pre-existing,while that of the second stage has both inheritance and variance to the first stage,i.e.superposition and reform,which accounts for the gestation and occurrence of the present-day major earthquakes in this area.
No earthquake greater than M6 has been documented on the Yilan-Yitong Fault,and no trace of activity since the late pleistocene has been seen either at the northeastern section of the famed Tanlu grand fault zone in eastern China.Thus this fault is recognized active in the early Quaternary and capable of generating moderate quakes.By analyzing high-resolution satellite images and field work,a 70km-long geomorphic scarp in Tonghe County of Heilongjiang Province and a 10km-long geomorphic scarp in Shulan County of Jilin Province were discovered.The scarps are 1~2m high and offset the young terraces.Subsequently,the trench at Tonghe County revealed fault displacement which almost reaches the surface.The uppermost stratum dislocated by the fault is dated to be 1730±40 years B.P.Analysis of geomorphic feature of the fault scarp and the trench profile suggests that an M≥7 paleoearthquake occurred along the fault since 1730±40 B.P.The trench at Shulan County reveals the faulted late Pleistocene stratum covered by stratum dated to be 2360±40 years B.P.All these data suggest that some segments of Yilan-Yitong Fault are active since Holocene and M7 earthquake occurred.So,further detailed research will be necessary to determine the range of the latest activity of this fault,the time of the rupture and recurrence intervals of major earthquakes.These data will be of great significance for earthquake zonation and assessment of seismic risk in this region.