Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
PALEOSEISMOLOGIC STUDY ON THE SHIMIAN FAULT IN THE NORTHERN SECTION OF THE DALIANGSHAN FAULT ZONE
FENG Jia-hui, CHEN Li-chun, WANG Hu, LIU Jiao, HAN Ming-ming, LI Yan-bao, GAO Shuai-po, LU Li-li
SEISMOLOGY AND GEOLOGY    2021, 43 (1): 53-71.   DOI: 10.3969/j.issn.0253-4967.2021.01.004
Abstract1172)   HTML    PDF(pc) (15854KB)(375)       Save
The Daliangshan fault zone(DF)constitutes an important part of the large-scale strike-slip Xianshuihe-Xiaojiang fault system(XXFS). Affected by the channel flow of the middle-lower crust in the western Sichuan region, the XXFS is strongly active, and large earthquakes occur frequently. On average, there is an earthquake of magnitude 7 or more every 34 years. However, the DF, as an important part of the middle segment of the XXFS, has only recorded several earthquakes with magnitude 5-6, and no earthquakes with magnitude over 6 have been recorded. The reason for the lack of strong earthquake records may be related to the lack of historical records in remote mountainous areas, but the main reason may be attributed to the active behavior of the faults. He et al.(2008)hold that the DF is a new fault, resulting from straightening of the middle section of the XXFS, and its activity gradually changes from weak to strong, and will probably replace the Anninghe-Zemuhe Fault. However, this view lacks evidence of strong earthquakes. In recent years, some scholars have studied the paleoearthquakes on the DF, and found the signs of strong earthquake activity, and considered that the fault has the seismogenic capacity of earthquakes with magnitude more than 7. These studies are mainly concentrated in the middle and southern segments of the DF. Although there are scattered activity data and individual trench profiles, direct evidence of Holocene activity and paleoearthquake data are very scarce in the northern part of DF. On the basis of the previous studies, combined with our detailed field geomorphological surveys, we excavated a set of two trenches at Lianhe village in Shimian Fault to reveal the direct evidence of fault activity in Holocene. From paleoseismic analysis and radiocarbon samples accelerated mass spectrometry(AMS)dating, four paleoseismic events are identified, which are E1 between 20925—16850BC, E2 between 15265—1785BC, E3 between 360—1475AD, and E4 between 1655—1815AD. The results of the latest two events should be relatively reliable, and the latest event may be related to the Moxi earthquake of magnitude 73/4 on June 1, 1786 or the Dalu earthquake of magnitude ≥7 on June 10, 1786. Among the four events revealed, three are since the Holocene, and the recurrence interval of the latest two events is about 800 years. Compared with other active faults at the triple junction, the recurrence interval is slightly longer than that at the northern segment of the Anninghe fault zone, but close to that at the Moxi segment of the Xianshuihe fault zone. Compared with the western segment of Xianshuihe Fault and the northern segment of Anninghe Fault, the Shimian Fault also has a higher seismic risk, which needs further attention.
Reference | Related Articles | Metrics
RESTORATION OF THE ORIGINAL TOPOGRAPHY OF THE XIAONANHAI LANDSLIDE IN CHONGQING AND CALCULATION OF ITS VOLUME
ZHOU Xin, ZHOU Qing, GAO Shuai-po, LI Xiao-feng
SEISMOLOGY AND GEOLOGY    2020, 42 (4): 936-954.   DOI: 10.3969/j.issn.0253-4967.2020.04.011
Abstract559)   HTML    PDF(pc) (9428KB)(126)       Save
As documented in history, an M6¼ earthquake occurred between Qianjiang, Chongqing and Xianfeng, Hubei(also named the Daluba event)in 1856. This earthquake caused serious geological hazards, including a lot of landslides at Xiaonanhai, Wangdahai, Zhangshangjie and other places. Among them, the Xiaonanhai landslide is a gigantic one, which buried a village and blocked the river, creating a quake lake that has been preserved to this day. As the Xiaonanhai landslide is a historical earthquake-induced landslide, it is impossible to obtain the remote sensing image and DEM data before the earthquake, which brings certain difficulties to the estimation of landslide volume and the establishment of numerical simulation model. In this paper, the original topography before the earthquake is inferred by the methods of geomorphic analogy in adjacent areas and numerical simulation, and the volume of the Xiaonanhai landslide body is calculated. Firstly, the principle and application of UAV aerial photography are introduced. We employed an unmanned airplane to take pictures of the Xiaonanhai landslide and adjacent areas, yielding high-precision DOM images(digital orthophoto graph)and DEM data which permit generating terrain contours with a 25m interval. We also used the method of intensive manual depth measurement in waters to obtain the DEM data of bottom topography of Xiaonanhai quake lake. Based on field investigations, and combining terrain contours and DOM images, we described the sizes and forms of each slump mass in detail. Secondly, considering that the internal and external dynamic geological processes of shaping landforms in the same place are basically the same, the landforms such as ridges and valleys are also basically similar. Therefore, combining with the surrounding topography and landform of the Xiaonanhai area, we used MATLAB software to reconstruct two possible original landform models before the landslide. The original topography presented by model A is a relatively gentle slope, with a slope of 40°~50°, and the original topography presented by model B is a very high and steep slope, with a slope of 70°~80°. Thirdly, Geostudio software is used to conduct numerical simulation analysis on the slope stability. The safety factor of slope stability and the scale of landslide are analyzed under the conditions of static stability, seismic dynamic response and seismic dynamic response considering topographic amplification effect. The results show that large landslide is more likely to occur in model B, which is more consistent with the reality. In order to verify the credibility of recovered DEM data of valley bottom topography, we visited the government of Qianjiang District, collected the drilling data of 11 boreholes in two survey lines of Xiaonanhai weir dam. It is verified that the recovered valley bottom elevation is basically consistent with that revealed by the borehole data. Finally, according to the two kinds of topographic data before and after the landslide, the volume of the landslide is calculated by using the filling and excavation analysis function of ArcGIS software. There is a gap between the calculation results of filling and excavation, the filling data is 3×106m3 larger than the excavation data. The reasons are mainly as follows: 1)Due to the disorderly accumulation of collapse blocks, the porosity of the accumulation body became larger, causing the volume of the fill to expand; 2)It has been more than 150a since the Xiaonanhai earthquake, and the landslide accumulation has been seriously reconstructed, therefore, there are some errors in the filling data; 3)The accumulation body in Xiaonanhai quake lake might be subject to erosion and siltation, this may affect the accuracy of the filling data. In conclusion, it is considered that the calculated results of the excavation are relatively reliable, with a volume of 4.3×107m3.
Reference | Related Articles | Metrics
LATE-QUATERNARY ACTIVITY OF THE YALAHE FAULT OF THE XIANSHUIHE FAULT ZONE, EASTERN MARGIN OF THE TIBET PLATEAU
LIANG Ming-jian, CHEN Li-chun, RAN Yong-kang, LI Yan-bao, WANG Dong, GAO Shuai-po, HAN Ming-ming, ZENG Di
SEISMOLOGY AND GEOLOGY    2020, 42 (2): 513-525.   DOI: 10.3969/j.issn.0253-4967.2020.02.016
Abstract755)   HTML    PDF(pc) (10730KB)(575)       Save
Complex geometrical structures on strike-slip faults would likely affect fault behavior such as strain accumulation and distribution, seismic rupture process, etc. The Xianshuihe Fault has been considered to be a Holocene active strike-slip fault with a high horizontal slip rate along the eastern margin of the Tibetan plateau. During the past 300 years, the Xianshuihe Fault produced 8 earthquakes with magnitude≥7 along the whole fault and showed strong activities of large earthquakes. Taking the Huiyuansi Basin as a structure boundary, the northwestern and southeastern segments of the Xianshuihe Fault show different characteristics. The northwestern segment, consisting of the Luhuo, Daofu and Qianning sections, shows a left-stepping en echelon pattern by simple fault strands. However, the southeastern segment(Huiyuansi-Kangding segment)has a complex structure and is divided into three sub-faults: the Yalahe, Selaha and Zheduotang Faults. To the south of Kangding County, the Moxi segment of the Xianshuihe Fault shows a simple structure. The previous studies suggest that the three sub-faults(the Yalahe, Selaha and Zheduotang Faults of the Huiyuansi-Kangding segment)unevenly distribute the strain of the northwestern segment of the Xianshuihe Fault. However, the disagreement of the new activity of the Yalahe Fault limits the understanding of the strain distribution model of the Huiyuansi-Kangding segment. Most scholars believed that the Yalahe Fault is a Holocene active fault. However, Zhang et al.(2017)used low-temperature thermochronology to study the cooling history of the Gongga rock mass, and suggested that the Yalahe Fault is now inactive and the latest activity of the Xianshuihe Fault has moved westward over the Selaha Fault. The Yalahe Fault is the only segment of the Xianshuihe Fault that lacks records of the strong historical earthquakes. Moreover, the Yalahe Fault is located in the alpine valley area, and the previous traffic conditions were very bad. Thus, the previous research on fault activity of the fault relied mainly on the interpretation of remote sensing, and the uncertainty was relatively large. Through remote sensing and field investigation, we found the geological and geomorphological evidence for Holocene activity of the Yalahe Fault. Moreover, we found a well-preserved seismic surface rupture zone with a length of about 10km near the Yariacuo and the co-seismic offsets of the earthquake are about 2.5~3.5m. In addition, we also advance the new active fault track of the Yalahe Fault to Yala Town near Kangding County. In Wangmu and Yala Town, we found the geological evidence for the latest fault activity that the Holocene alluvial fans were dislocated by the fault. These evidences suggest that the Yalahe Fault is a Holocene active fault, and has the seismogenic tectonic condition to produce a large earthquake, just like the Selaha and Zheduotang Faults. These also provide seismic geological evidence for the strain distribution model of the Kangding-Huiyuansi segment of the Xianshuihe Fault.
Reference | Related Articles | Metrics
GEOMETRIC DISTRIBUTION AND CHARACTERISTICS OF THE SURFACE RUPTURE OF TWO HISTORICAL EARTHQUAKES IN THE BARKOL BASIN, XINJIANG
XU Liang-xin, RAN Yong-kang, LIANG Ming-jian, WU Fu-yao, GAO Shuai-po, WANG Hu
SEISMOLOGY AND GEOLOGY    2020, 42 (1): 1-17.   DOI: 10.3969/j.issn.0253-4967.2020.01.001
Abstract220)   HTML18)    PDF(pc) (16663KB)(98)       Save

Surface rupture zone of historical earthquake is the most intuitive geomorphological response to fault activity. The rupture pattern, coseismic displacement and its geometric spatial distribution are important for determining segmentation and long-term movement behaviors of active fault. In the Barkol Basin of Xinjiang, according to the comprehensive result from remote sensing image interpretation, field surgery, high-resolution small unmanned aerial vehicles photography, terrain deformation measurements and trench excavation on geomorphological points, not only the new surface ruptures of the two M71/2 historical earthquakes in Barkol in 1842 and 1914 were found and defined between Xiongkuer and the southwest of Barkol County in southwestern part of the basin, but also the latest deformation evidence of the EW fold-up faults in the eastern part of the Basin was identified.
Combined with the ancient document analysis of the two historical earthquakes, we finally conclude that the surface rupture zone in the western segment on the southern margin of the Barkol Basin is the seismogenic structure of the M71/2 earthquake in 1842. The surface rupture zone is mainly characterized by left-lateral strike-slip, roughly with en echelon arrangement spreading from Xiongkuer to the south of Barkol County. The length of the surface rupture zone determined by field investigation is at least about 65km, and the maximum horizontal displacement appears around the Xiongkuer Village. At the same time, the surface rupture zone gradually shows more significant thrust extrusion from west to east, and has a tendency of extension towards the central of the Barkol Basin. The average observed displacement of the entire surface rupture obtained by counting the coseismic offsets of multiple faulted gullies is(4.1±1.0)m, with the coseismic characteristic displacement of ~4m. The epicenter position should appear at the place with the largest horizontal dislocation amount near Xiongkuer Village.
In addition, the length of the fold-blind fault zone in the vicinity of the Kuisu Town and the eastward extension to the Yanchi Township of the Yiwu Basin, which was discovered in the center of the Barkol Basin, is about 90km. The folded blind fault causes significant fold deformation in the latest sedimentary strata such as floodplain, and in addition, as shown on many outcrop sections, the bending-moment faults associated with the coseismic fold deformation have ruptured the surface. Therefore, the location of the epicenter should be located at the maximum fold deformation, which is near the Kuisu Town. The new research results not only further improve the understanding of the epicenter location and seismogenic faults of the two historical earthquakes in the Barkol Basin, but also provide an important reference for analyzing regional seismic hazards.

Table and Figures | Reference | Related Articles | Metrics
DETERMINATION OF SLIP RATE ON THE SOUTHERN SEGMENT OF THE ANNINGHE FAULT
WANG Hu, RAN Yong-kang, CHEN Li-chun, LIANG Ming-jian, GAO Shuai-po, LI Yan-bao, XU Liang-xin
SEISMOLOGY AND GEOLOGY    2018, 40 (5): 967-979.   DOI: 10.3969/j.issn.0253-4967.2018.05.002
Abstract658)   HTML    PDF(pc) (7188KB)(320)       Save
The Anninghe Fault has been suggested as an important segment of the fault system along the eastern boundary of the Sichuan-Yunnan faulted block in the southeastern region of the Tibetan plateau. Reliable determination of the Late Quaternary slip rate on the Anninghe Fault is very helpful and significant for revealing deformation mechanism and kinematic characteristics of the Sichuan-Yunnan faulted block, which further helps us understand fault activity and seismic potential of the region. However, previous studies were focused mainly on the northern segment of the Anninghe Fault, while slip rate on its southern segment has been less studied. Therefore, in this paper, we chose two sites at Dashuigou and Maoheshan on the southern segment of the Anninghe Fault, and used high-resolution images of unmanned aerial vehicle (UAV)photogrammetry technology, detailed field survey, multiple paleoseismic trenching and radiocarbon dating methods to constrain slip rate on the southern fault segment of the Anninghe Fault. Specifically, we suggest that the slip rate at the Dashuigouo site is narrowly constrained to be~4.4mm/a since about 3300aBP based on a linear regression calculation method, and speculate that a slip rate of 2.6~5.2mm/a at the Maoheshan site would be highly possible, although we poorly constrained the whole deformation amount of the two branch faults at the Maoheshan site from multiple paleoseismic trenching. The data at the two sites on the southern segment show a consistent slip rate compared with that of the northern segment of the Anninghe Fault. Moreover, considering a similar paleoseismic recurrence interval on the two segments of the Anninghe Fault from previous studies, we further suggest that the fault activity and deformation pattern on the two segments of the Annignhe Fault appears to be well consistent, which is also in agreement with the regional tectonic deformation.
Reference | Related Articles | Metrics
INVESTIGATION TO LANDSLIDES TRIGGERED BY THE 1856 QIANJIANG-XIANFENG(DALUBA)EARTHQUAKE AND THEIR GENERATION MECHANISMS
ZHOU Xin, ZHOU Qing, GAO Shuai-po
SEISMOLOGY AND GEOLOGY    2018, 40 (2): 410-425.   DOI: 10.3969/j.issn.0253-4967.2018.02.009
Abstract851)      PDF(pc) (12052KB)(158)       Save
On 10 June 1856, an M61/4 earthquake occurred between Qianjiang, Chongqin and Xianfeng, Hubei, resulting in severe geologic hazard including a series of large-scale landslides. Based on previous work, combining field investigations and remote sensing imagery, we have mapped the locations of three landslides triggered by this event, dominated by slumps. Our field work included observations to every failure slopes and occurrence, lithology and joints of rocks in the surroundings. We also employed an unmanned air plane to take pictures of the study area, yielding high-resolution DEM and DOM data which permit to generate terrain contours with a 2m interval. With these field investigations, we have described the sizes and forms of each slump mass in detail, and studied their generation mechanisms. Our research suggests the following natural conditions are responsible for these seismic landslides. 1)In a tectonic stress field characterized by NW-SE directed principal compressive stress, the slopes received a seismic acceleration from NW to SE in a short time. 2)Strata dip in a direction consistent with the seismic motion, thus the slope was easy to slide along stratum interfaces. 3)The two sets of joints existing in rocks experienced long-term weathering, resulting in connection of partial structural planes and destruction to the intactness of rock bodies.
Reference | Related Articles | Metrics
USING UAV PHOTOGRAMMETRY TECHNOLOGY TO EXTRACT INFORMATION OF TECTONIC ACTIVITY OF COMPLEX ALLUVIAL FAN——A CASE STUDY OF AN ALLUVIAL FAN IN THE SOUTHERN MARGIN OF BARKOL BASIN
GAO Shuai-po, RAN Yong-kang, WU Fu-yao, XU Liang-xin, WANG Hu, LIANG Ming-jian
SEISMOLOGY AND GEOLOGY    2017, 39 (4): 793-804.   DOI: 10.3969/j.issn.0253-4967.2017.04.013
Abstract728)   HTML    PDF(pc) (8885KB)(325)       Save
Alluvial fans that are in the process of development always show complex geomorphic features due to natural modification. Accordingly, analyzing these fans whether to be influenced by tectonic deformation is one of the technique difficulties in active tectonic studies. Complex alluvial fans are the focus of the study of active tectonics such as fracture mapping and activity behavior analysis, for they have often retained important structural information. Traditional measurement methods, such as satellite remote sensing, RTK GPS and Lidar, are difficult to meet the demand for the study of micro tectonic deformation because of the reason of accuracy or cost performance. The recent UAV photogrammetry technology, due to its many advantages such as low cost, high resolution, and efficiency of exporting DEM and DOM data, has been widely used in three-dimensional modeling, ground mapping and other fields. In the quantitative study of active tectonics, this technology fills up the deficiency in the research of the micro structure of the traditional measurement. Through detailed field investigations and paleoseismic trenching, we further used this technology to obtain the topographic data of a complex alluvial fan located at the southern marginal fault of Barkol Basin, Xinjiang. Pointing at the alluvial fans that are in the process of development, and on the basis of topographic analysis and image processing for DEM, we take the research method of secondary partitions of the geomorphic surface and cut the alluvial fans longitudinally according to the difference of its age. Through the establishment of profile cluster within each partition, separate analysis and data contrast with the adjacent partitions, we acquired the tectonic activity information during the development of alluvial fan. The tectonic vertical deformation of this alluvial fan is about 2.5m.
Reference | Related Articles | Metrics
HOLOCENE PALAEOSEISMOLOGIC RECORD AND RUPTURE BEHAVIOR OF LARGE EARTHQUAKES ON THE XIANSHUIHE FAULT
LI Dong-yu, CHEN Li-chun, LIANG Ming-jian, GAO Shuai-po, ZENG Di, WANG Hu, LI Yan-bao
SEISMOLOGY AND GEOLOGY    2017, 39 (4): 623-643.   DOI: 10.3969/j.issn.0253-4967.2017.04.001
Abstract1051)   HTML    PDF(pc) (18149KB)(957)       Save
The Xianshuihe Fault, the boundary of Bayan Har active tectonic block and Sichuan-Yunnan active tectonic block, is one of the most active fault zones in the world. In the past nearly 300 years, 9 historical earthquakes of magnitude ≥ 7 have been recorded. Since 2008, several catastrophic earthquakes, such as Wenchuan MS8 earthquake, Yushu MS7.1 earthquake and Lushan MS7 earthquake, have occurred on the other Bayan Har block boundary fault zones. However, only the Kangding MS6.3 earthquake in 2014 was documented on the Xianshuihe Fault. Thus, the study of surface deformation and rupture behavior of large earthquakes in the late Quaternary on the Xianshuihe Fault is of fundamental importance for understanding the future seismic risk of this fault, and even the entire western Sichuan region. On the basis of the former work, combined with our detailed geomorphic and geological survey, we excavated a combined trench on the Qianning segment of Xianshuihe fault zone which has a long elapse time. Charcoal and woods in the trench are abundant. 30 samples were dated to constrain the ages of the paleoseismic events. Five events were identified in the past 9  000 years, whose ages are:8070-6395 BC, 5445-5125 BC, 4355-4180 BC, 625-1240 AD and the Qianning earthquake in 1893. The large earthquake recurrence behavior on this segment does not follow the characteristic earthquake recurrence model. The recurrence interval is 1000~2000 years in early period and in turn there is a quiet period of about 5 000 years after 4355-4180 BC event. Then it enters the active period again. Two earthquakes with surface rupture occurred in the past 1000 years and the latest two earthquakes may have lower magnitude. The left-lateral coseismic displacement of the 1893 Qianning earthquake is about 2.9m.
Reference | Related Articles | Metrics