Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4)and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province.The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.
The Fodongmiao-Hongyazi Fault belongs to the forward thrust fault of the middle segment of northern Qilian Shan overthrust fault zone, and it is also the boundary between the Qilian Shan and Jiudong Basin. Accurately-constrained fault slip rate is crucial for understanding the present-day tectonic deformation mechanism and regional seismic hazard in Tibet plateau. In this paper, we focus on the Shiyangjuan site in the western section of the fault and the Fenglehe site in the middle part of the fault. Combining geomorphic mapping, topographic surveys of the deformed terrace surfaces, optically stimulated luminescence (OSL) dating, terrestrial cosmogenic nuclide dating and radiocarbon (14C) dating methods, we obtained the average vertical slip rate and shortening rate of the fault, which are ~1.1mm/a and 0.9~1.3mm/a, respectively. In addition, decadal GPS velocity profile across the Qilian Shan and Jiudong Basin shows a basin shortening rate of~1.4mm/a, which is consistent with geological shortening rates. Blind fault or other structural deformation in the Jiudong Basin may accommodate part of crustal shortening. Overall crustal shortening rate of the Jiudong Basin accounts for about 1/5 of shortening rate of the Qilian Shan. The seismic activity of the forward thrust zone of Tibetan plateau propagating northeastward is still high.
Motuo Fault locates at the east of Namjagbarwa Peak in eastern Himalayan syntaxis.Based on the remote sensing interpretation,the previous work,and with the field investigation,this paper obtains the spatial distribution and movement characteristics of Motuo Fault in China,and geological evidences of late Quaternary activity.Two trenches in Motuo village and Dongdi village located in Yalung Zangbo Grand Canyon reveal that the Motuo Fault dislocates the late Quternary stratum and behaves as a reverse fault in Motuo village and normal fault in Dongdi village.Motuo Fault is dominated by left-lateral strike-slip associated with the faulted landforms,with different characteristics of the tilting movement in different segments.The trench at Didong village reveals the latest stratum dislocated is~2780±30 a BP according to radiocarbon dating,implying that Motuo Fault has ruptured the ground surface since late Holocene.The movement of left-lateral strike-slip of Motuo Fault is related to the northward movement process of Indian pate.
With the development of the techniques acquiring high-resolution digital terrain data,the digital terrain data acquisition technology has been widespread applied to the geoscience research.A revolutionary,low-cost and simply operative SfM (Structure from Motion) technology will make obtain high-resolution DEM data more convenient for researches on active tectonics.This paper summarizes the basic principles and workflows of SfM technology and processes and selects the Hongshuiba River area along the northern margin of the Qilian Shan to conduct data collection.We use a series of digital pictures to produce a texture with geographic information,in which data resolution is 6.73cm/pix and average density of point cloud is 220.667 point/m2.The coverage area is 0.286km2.Further,in order to compare the accuracy between SfM data and differential GPS (DGPS) data in details,SfM data are vertically shifted and tilt-corrected.After optimizing corrections of SfM data,the absolute value of elevation difference between two data substantially concentrates around 20cm,roughly equivalent to 2-folds of data error only after the elevation error correction.Elevation difference between two data is 10~15cm in 90% confidence interval.The maximum error is about 30cm,but accounts for less than 10%.Along the direction of fault trace,the height of fault scarp extracted from SfM data shows that vertical displacement of the latest tectonic activity in the east bank of Hongshuiba River is about 1m,and some minimum scarps height may be 0.3m.The results show SfM technology with high vertical accuracy can be able to replace differential GPS in high-precision topographic survey.After correcting of SfM data,elevation difference still exists,which may be associated with methods of generating DEM and SfM data accuracy,which in turn is controlled by the number and distribution of Ground Control Points (GCPs),photos density and camera shooting height,but also related to surface features,Fodongmiao-Hongyazi Fault
Based on geological and geomorphologic characteristics of the surface faults acquired by field investigations and subsurface structure from petroleum seismic profiles, this paper analyzes the distribution, activity and formation mechanism of the surface faults in the east segment of Qiulitage anticline belt which lies east of the Yanshuigou River and consists of two sub-anticlines:Kuchetawu anticline and east Qiulitage anticline. The fault lying in the core of Kuchetawu anticline is an extension branch of the detachment fault developed in Paleogene salt layer, and evidence shows it is a late Pleistocene fault. The faults developed in the fold hinge in front of the Kuchetawu anticline in a parallel group and having a discontinuous distribution are fold-accommodation faults controlled by local compressive stress. However, trenching confirms that these fold-accommodation faults have been active since the late Holocene and have recorded part of paleoearthquakes in the active folding zone. The fault developed in the south limb near the core of eastern Qiulitage anticline is a low-angle thrust fault, likely a branch of the upper ramp which controls the development of the eastern Qiulitage anticline. The faults lying in the south limb of eastern Qiulitage anticline are shear-thrust faults, which are developed in the steeply dipping frontal limb of the fault-propagation folds, and also characterized by group occurrence and discontinuous distribution. Several fault outcrops are discovered near Gekuluke, in which the Holocene diluvial fans are dislocated by these faults, and trench shows they have recorded several paleoearthquakes. The surface anticlines of rapid growth and associated accommodation faults are the manifestations of the deep faults that experienced complex folding deformation and propagated upward to the near surface, serving as an indicator of faulting at depth. The fold-accommodation faults are merely local deformation during the folding process, which are indirectly related with the deep faults that control the growth of folds. The displacement and slip rate of these surface faults cannot match the kinematics parameters of the deeper fault, which controls the development of the active folding. However, these active fold-accommodation faults can partly record paleoearthquakes taking place in the active folding zone.
The recent researches of active faults related to the north segment of the eastern boundary of GTSR(the great triangular seismotectonic region of Central Asia),including the north part of the North-South Seismic Belt and central Mongolia,are summarized based on their geological background and seismic activities at present. The north segment of the eastern boundary of the GTSR is composed by a series of terminal structures,lateral structures of large sinistral strike-slip faults,and transtensional graben fault systems between the large sinistral strike-slip faults. From south to north,the fault systems,which compose the north segment of the eastern boundary of GTSR,include: (1)Liupanshan arcuate fault zone, which is the eastern terminal compression structure of the Haiyuan Fault zone and Zhongwei-Tongxin Fault zone; (2)Zhuozishan-Helanshan Fault system, which is a transtensional graben fault systems between the Zhongwei-Tongxin Fault zone and the Yabulaishan-Bayanxiboshan Fault zone; (3)Langshan-Sertengshan piedmont fault system, which is the eastern relaxing structure of the Yabulaishan-Bayanxiboshan Fault zone; (4)Dalandzadgad Fault system, which is the eastern terminal compression structures of the Gobi-Tienshan Fault zone and Gobi-Altay Fault zone; (5)Mogod Faults system,the possible eastern terminal compressional structures of the North Hangay Fault zone; and (6)Hovsgol rift system, which is the extensional lateral structures of the Tunka Fault zone. The nature of the seismic structures of the north segment of the eastern boundary of the GTSR is the re-activation of the pre-existing faults that locate beside or on the terminations of giant strike-slip fault zones in the present regional stress field,controlled by the northward pushing of the Indian-Eurasia collision and local upper mantle material flow or significant anisotropies deep in the upper mantle.