Sanwei Shan Fault is located in the north of Tibet, which is a branch of eastern segment of Altyn Tagn fault zone. This fault is distributed along the boundary of fault facet and the Quaternary, with the total length of almost 150km. The fault is a straight-line structure read from the satellite image. Based on the spatial distribution of the fault, three segments are divided, namely, Xishuigou-Dongshuigou segment, Dongshuigou-West Shigongkouzi segment and West Shigongkouzi-Suangta segment, these three segments are distributed by left or right step.Though field microgeomorphology investigation along Sanwei Shan Fault, it has been found that two periods of alluvial-pluvial fans are distributed in front of Sanwei Shan Mountain, most of which are overstepped. Comparing the distribution of alluvial-pluvial fans with their formation age in the surrounding regions, and meanwhile, taking the results of optical stimulated luminescence(OSL) dating, it's considered that the formation age of the older alluvial-pluvial fans, which are distributed in northern Qilian Shan, inside of Hexi Corridor and western Hexi Corridor(including the Sanwei Shan piedmont fans), is between later period of late Quaternary and earlier period of Holocene. The gullies on the older fan and ridges have been cut synchronously. The maximum and minimum sinistral displacement is 5.5m and 1.7m, but majority of the values is between 3.0~4.5m. Taking the results from the OSL dating, we conclude that the minimum sinistral strike-slip rate is(0.33±0.04) mm/a since 14 ka BP and(0.28±0.03) mm/a since 20 ka BP.
The co-seismic rupture is one of the important contents in active tectonic mapping.As the late Quaternary landform is a basic recording medium for the recent deformation of active fault,such as the co-seismic rupture,it is quite useful to acquire the activity information of the active fault from various landforms.We implemented a field work along the southeastern segment of the Xianshuihe Fault,mapped the rupture and excavated some trenches.The preservation characteristics of the surface rupture of the 1786 Moxi earthquake were discussed for the glacial area of the Tibetan plateau,the fluvial and flooding area and seriously eroded area at the margin of the Tibetan plateau,respectively.The cracks and offsets were preserved continuously in the glacial landforms such as the moraines and glacial outwashes along Kangding to Yajiageng segment.As the landforms in the fluvial and flooding area were unstable under strong erosion and rapid deposition,the surface rupture can be discovered in the trenches excavated in Yuejinping village and Ertaizi village with gaps for some previous earthquakes.There was no deposition from the erosion landform to record the surface rupture.We can only infer the earthquake effected area and the ruptured fault from the indirect relationship between landslides and the earthquake strong motion or the fault rupturing.Based on the integrated analysis with the geometry and tectonic setting of the southeastern segment of the Xianshuihe Fault,the Kangding-Tianwan segment of the Xianshuihe Fault was taken as the seismogenic fault of the 1786 Moxi earthquake,and the total length of the rupture is about 80 kilometers.
To carry out the project "Study on paleo-tsunami in east and southeast seashore area of China" supported by China Ministry of Science and Technology,we made a study tour to Japan in April,2007.In this visit,we investigated roughly the tsunami deposits in Ishinomaki Plain,Miyaki County,Japan,where a huge earthquake of MW 9.0 occurred at March 11,2011.This earthquake caused a great tsunami along the northeast coast of Honsyu Island,Japan,bringing lots of death and huge economic loss.To understand the tsunami history in this area and the methods of investigating tsunami deposits,it is necessary to introduce briefly our investigation in Ishinomaki Plain,Miyaki County,Japan.Our investigation results demonstrated three tsunami events occurred in this area. The latest one occurred before 915 AD,when the Towada volcano erupted and the tephra from this eruption covered almost all of the Northeast Japan,corresponding to the 869 AD Jogan earthquake tsunami.
The Longmenshan Fault zone is an important thrust belt on the eastern margin of the Qinghai-Tibet Plateau,consisting of the back-range,the central and the front-range faults,which differ from each other in size and activity.The rupture zone of the Wenchuan earthquake of 12 May 2008 occurred over a length of~270km along the Yingxiu-Beichuan Fault(a segment of the Central Fault)and a length of~70km along the Guanxian-Anxian Fault(a segment of the Front-Range Fault).The northern end of the fracture zone is at the Nanba region in Central Fault.In this work,we make a detailed field investigation on the northeast segment of the Longmenshan Fault zone.Qingchuan Fault is the northeast segment of the Longmenshan Back-range Fault,and the Chaba-Lin'ansi Fault is the northeast segment of the Longmenshan Central Fault.Along the above two faults,we make geological and geomorphologic mapping of Tuguanpu,Da'an and Hujiaba regions,where the Qingchuan Fault runs through the Tuguanpu and Da'an area,and Chaba-Lin'ansi Fault runs through the Hujiaba area.Based on the field investigation,there are five terraces in the northeast Longmenshan area along the major rivers.The height above the river of T1 terrace is about 3~5m,and the formation time is Holocene.The heights of T2 and T3 terraces are 10m and 30~35m above the river,and the deposition time of alluvium and diluvium is Late Pleistocence.The remnant of T4 terrace's sediment covers on some hills,with the height above the river of about 60~70m.In the remnant,granite cobble and sandstone cobbles have been air slaked,these gravels have the shapes only.T5 terrace's height is about 90m,the sediment on it has been eroded.Qingchuan Fault and Chaba-Lin'ansi Fault were strongly active faults in the times before T3 and after T4 formed.Some fault grooves were formed on T4 or T5 terrace,they have 30~180m in width,and 8~20m in depth.The vertical displacement of T4 terrace's gravels is 10~15m.Fault groove didn't form on T3 terrace,or the terrace height on a fault wall is consistent with other fault wall.At some places,T3 terrace's gravels overlie the fault zone.