According to the structure of the Himalayan orogenic belt, a low-angle antilistric thrust-slip fault model is used to simulate the ramp on the rupture portion of the Main Himalayan Fault. Based on descending Alos -2 and Sentinal -1 data, we invert for the coseismic slip models of the Gorkha earthquake and its largest aftershock, Kodari earthquake. In contrast to the inversion using Alos -2 or Sentinal -1 separately, the joint inversion of both data sets has stronger constraint for the deep slip and can obtain more details in Gorkha earthquake. The rupture depth obtained by joint inversion can be as deep as 24km underground, cutting across the locking line to the transition of locked and the creeping zone. The largest slip is as large as 4.5m appearing 17km underground and the dip angle is between 3°and 10°. Gorkha and Kodari earthquakes have the similar focal mechanisms, both of which are mainly thrusting, and yet some right-lateral slip component in Gorkha earthquake. The inversion results reveal that slip models of the Nepal mainshock and its largest aftershock are complementary in space and the Kodari earthquake occurs in the gaps of slip in Gorkha earthquake. The epicenter of the Kodari earthquake is just right in the transitive zone of the positive and negative Coulomb stress change, where the Coulomb stress change can reach 0.4MPa. We thus argue that Kodari earthquake has been triggered by the Gorkha earthquake.
We achieved the coseismic displacements of the Napa MW6.1 earthquake located in California US occurring on 24 August 2014 by using InSAR data from the newly launched ESA's Sentinel-1A satellite. The 30m×30m ASTER GDEM was used to remove the terrain effect, and phase unwrapping method of branch-cut algorithm was adopted. In order to obtain a better coseismic displacement field, we also tested 90m×90m SRTM data to remove the terrain effect and Minimum Cost Flow algorithm to unwrap the phase. Results showed that the earthquake caused a significant ground displacement with maximum uplift and subsidence of 0.1m and -0.09m in the satellite light of sight(LOS). Based on the Sentinel-1A dataset and sensitivity based iterative fitting(SBIF) method of restrictive least-squares algorithm, we obtained coseismic fault slip distribution and part of the earthquake source parameters. Inversion results show that the strike angle is 341.3°, the dip angle is 80°, rupture is given right-lateral fault, average rake angle is -176.38°, and the maximum slip is ~0.8m at a depth of 4.43km. The accumulative seismic moment is up to 1.6×1018N·m, equivalent to a magnitude of MW6.14.
Vertical coseisimic deformation near seismogenic fault is one of the most important parameters for understanding the fault behavior, especially for thrust or normal fault, since near field vertical deformation provides meaningful information for understanding the rupture characteristics of the seismogenic fault and focal mechanism. Taking Wenchuan thrust earthquake for an example, we interpolate GPS horizontal observed deformation using Biharmonic spline interpolation and derive them into east-westward or north-southward deformation field. We first use reliable GPS observed value to correct InSAR reference point and unify both GPS and InSAR coordinate frame. We then make a profile using InSAR data and compare it to that from GPS data and we find GPS and InSAR observation reference point has a 9.93cm difference in the hanging wall side, and around -11.49cm in the footwall. After correction, we obtain a continuous vertical deformation field of the Wenchuan earthquake by combined calculation of GPS and InSAR LOS deformation field. The results show that the vertical deformation of both hanging wall and foot wall of the fault decreases rapidly, with deformation greater than 30cm within 50km across the fault zone. The uneven distribution of the vertical deformation has some peak values at near fault, mainly distributed at the southern section(the town of Yingxiu), the middle(Beichuan)and the northern end(Qingchuan)of the seismogenic fault. These three segments have their own characteristics. The southern section of the fault has an obvious asymmetric feature, which exhibits dramatic uplift reaching 550cm on the hanging wall, with the maximum uplift area located in Yingxiu town to Lianshanping. The middle section shows a strong anti-symmetric feature, with one side uplifting and the other subsiding. The largest uplifting of the southern segment reaches around 255cm, located at the east of Chaping, and the largest subsiding is in Yongqing, reaching around -215cm. The vertical deformation of the northern section is relatively small and distributed symmetrically mainly in the north of Qingchuan, with the maximum uplift to be 120cm, locating in the northernmost of the seismogenic fault.