Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
APPLICATION OF SEMIAUTOMATIC EXTRACTION OF FLUVIAL TERRACES BASED ON R LANGUAGE-AN EXAMPLE FROM THE YELLOW RIVER TERRACES AT MIJIA SHAN
YAO Wen-qian, LIU-ZENG Jing, Michael Oskin, HAN Long-fei, LI Xue, WANG Heng, XU Xin-yue, LI Zhan-fei, ZHANG Jin-yu
SEISMOLOGY AND GEOLOGY    2019, 41 (2): 363-376.   DOI: 10.3969/j.issn.0253-4967.2019.02.007
Abstract598)   HTML    PDF(pc) (6746KB)(765)       Save
The generation, abandonment and preservation of terraces formed in active tectonic areas are important to the analysis of the role of the tectonics and climate along the temporal variations, so it appears significant as how to use the effective quantitative methods to extract and accurately depict these terraces. The increasingly convenient acquisition of high-precision topographic data has greatly promoted the advancement of quantitative research in geoscience, making it possible to analyze mid-micro-geomorphic features on a large scale, especially by studying the temporal and spatial evolution of tectonic deformation through accurate capture of micro-geomorphic features. Over the past decade, the rapid development of LiDAR(Light Detection and Ranging)technology has provided unprecedented opportunity to access high-precision topographic data(up to centimeter in vertical and horizontal directions). However, its relatively high cost and relatively complex data processing techniques limit its widespread application in the field of earth sciences. In recent years, with the continuous innovation and advancement of topographic measurement technology, the three-dimensional structure of motion reconstruction technology(Structure from Motion, SfM)has gradually been introduced into the field of digital topographic photogrammetry due to its rapid advantage in providing quick, convenient and cost-effective methods for obtaining high-density geospatial point data. This method thus shows great potential for providing high resolution topographic data with comparable resolution and precision. Therefore, with the acquisition of more and more high-resolution terrain data in recent years, it is an important development trend to explore automated or semi-automated quantitative geomorphological analysis methods. R language, as an excellent programming language, has not been used in the geology and geomorphology, although is widely applied in medicine and meteorology based on its powerful capability of statistician and graphic visualization. In this paper, we focus on the Yellow River multi-terraces formed to the east of the Mijia Shan, which belongs to the Jingtai-Hasi Shan segment of the Haiyuan Fault. With the analysis and visualization of the high-resolution topographic data collected from the SfM in the environment of the R language, we implement the semiautomatic classification and mapping of the Yellow River multi-terraces. The method identifies 20 terraces with different elevation. Our results also imply that the younger terraces have better continuity and elongation, and the older terraces have more deformation, which can be demonstrated from their gradually notable semi-parabolic shape. Besides this, it also suggests the diverse evolution stages of the Yellow River terraces. Our study indicates that R language is expected to become an efficient tool of statistics and visualization of the high-resolution topographic data.
Reference | Related Articles | Metrics
EXTRACTING FEATURES OF ALLUVIAL FAN AND DISCUSSING LANDFORMS EVOLUTION BASED ON HIGH-RESOLUTION TOPOGRAPHY DATA: TAKING ALLUVIAL FAN OF LAOHUSHAN ALONG HAIYUAN FAULT ZONE AS AN INSTANCE
HAN Long-fei, ZENG Jing, YUAN Zhao-de, SHAO Yan-xiu, WANG Wei, YAO Wen-qian, WANG Peng, LIANG Ou-bo, XU Xin-yue
SEISMOLOGY AND GEOLOGY    2019, 41 (2): 251-265.   DOI: 10.3969/j.issn.0253-4967.2019.02.001
Abstract551)   HTML    PDF(pc) (7560KB)(410)       Save
Range-front alluvial fan deposition in arid and semiarid environments records vast amounts of climatic and tectonic information. Differentiating and characterizing alluvial fan morphology is an important part in Quaternary alluvial fan research. Traditional method such as field observations is a most important part of deciphering and mapping the alluvial fan. Large-scale automatically mapping of alluvial fan stratigraphy before traditional field observations could provide guidance for mapping alluvial fan morphology, thus improving subsequent field work efficiency. In this research, high-resolution topographic data were used to quantify relief and roughness of alluvial fan within the Laohushan. These data suggest that mean surface roughness plotted against the size of the moving window is characterized by an initial increase in surface roughness with increased window size, but it shows no longer increase as a function of windows size. These data also suggest that alluvial fans in this study site smooth out with time until a threshold is crossed where roughness increases at greater wavelength with age as a result of surface runoff and headward tributary incision into the oldest surfaces which suggests the evolution process of alluvial fan.
Researchers usually differentiate alluvial morphology by mapping characteristics of fan surface in the field by describing surface clast size, rock varnish accumulation, and desert pavement development and analysis of aerial photographs or satellite imagery. Recently, the emergence of high-resolution topographic data has renewed interest in the quantitative characterization of alluvial and colluvium landforms. Surface morphology that fan surface initially tends to become smoother with increasing age due to the formation of desert pavement and the degradation of bar-and-swale topography and subsequently, landforms become more dissected due to tectonics and climatic change induced increased erosion and channelization of the surface with time is widely used to distinguish alluvial fan types. Those characteristics would reflect various kinds of morphology metrics extracted from high-resolution topographic data. In the arid and semiarid regions of northwestern China, plenty of alluvial fans are preserved completely for lack of artificial reforming, and there exists sparse surface vegetation. In the meantime, range-front alluvial fan displaced by a number of active faults formed a series of dislocated landforms with different offsets which is a major reference mark in fault activity research. In this research, six map units(Qf6-Qf1), youngest to oldest, were observed in the study area by mapping performed by identifying geomorphic features in the field that are spatially discernible using hill-shade and digital orthophoto map. Alluvial fan relief and roughness were computed across multiple observation scales(2m×2m to 100m×100m)based on the topographic parameters of altitude difference and standard deviation of slope, curvature and aspect.
In this research, mean relief keeps increasing with increased window size while mean surface roughness is characterized by a rapid increase over wavelengths of 6~15m, representing the typical length scale of bar-and-swale topography. At longer wavelengths, surface roughness values increase by only minor amounts, suggesting the topographic saturation length is 6~15m for those fan surfaces in which saturation length of standard deviation of curvature is less than 8m. Box and whisker plot of surface roughness averaged over 8m2 for each alluvial fan unit in the study area suggests that the pattern of surfaces smoothing out with age and then starting to become rougher again as age increases further beyond Qf4 or Qf3 unit. The younger alluvial fan is characterized by prominent bar-and-swale while the older alluvial fan is characterized by tributaries headward incision. Cumulative frequency distributions of relief and surface roughness in Figure 8 are determined in an 8m by 8m moving window for the comparison of six alluvial fan units in the northeast piedmont of Laohushan. From these distributions we know that Qf6 and Qf1 reflect the prominent relief which is related to bar-and-swale and tributaries headward incision respectively, while Qf4 and Qf3 reflect the moderate relief which is related to subdued topography.
Surface roughness, in addition to facilitating the characterization of individual fan units, lends insight to alluvial landform development. We summarize an alluvial landform evolutionary scheme which evolves four stages depending on characteristics of alluvial fan morphology development and features of relief and roughness. The initial stage in this study site is defined as the active alluvial fan channels with bars of coarse cobbles and boulders and swales consisting of finer-grained pebbles and sand which could be reflected by high mean relief and mean roughness values. As time goes, bar-and-swale topography is still present, but an immature pavement, composed of finer grained clasts, has started to form. In the third stage, the bar-and-swale topography on the fan surface is subdued, yet still observable, with clasts ranging from pebbles to cobbles in size and there exists obvious headward tributary incision. Eventually, tributary channels form from erosion by surface runoff. Headward incision of these tributaries wears down the steep walls of channels that are incised through the stable, planar surface, transforming the oldest alluvial landforms into convex hillslopes, leaving only small remnants of the planar surface intact. Those evolutionary character suggests that alluvial fans in this area smooth out with time, however, relief or roughness would be translated to increase at greater wavelength with age until a threshold is crossed.
This research suggests that relief and roughness calculated from high-resolution topographic data of this study site could reflect alluvial fan morphology development and provide constraint data to differentiate alluvial fan unit.
Reference | Related Articles | Metrics
COSMOGENIC NUCLIDES EXPOSURE DATING FOR BEDROCK FAULT SCARP: RECONSTRUCTING THE PALEOEARTHQUAKE SEQUENCE
ZHANG Jin-yu, ZENG Jing, WANG Heng, SHI Xu-hua, YAO Wen-qian, XU Jing, XU Xin-yue
SEISMOLOGY AND GEOLOGY    2018, 40 (5): 1149-1169.   DOI: 10.3969/j.issn.0253-4967.2018.05.014
Abstract746)   HTML    PDF(pc) (5547KB)(589)       Save
The bedrock scarps are believed to have recorded the continuous information on displacement accumulation and sequence of large earthquakes. The occurrence timing of large earthquakes is believed to be correlated positively with the exposure duration of bedrock fault surfaces. Accordingly, cosmogenic nuclides concentration determined for the bedrock footwall can offer their times, ages, and slip over long time. In general, multiple sites of fault scarps along one or even more faults are selected to carry out cosmogenic nuclide dating in an attempt to derive the temporal and spatial pattern of fault activity. This may contribute to explore whether earthquake occurrence exhibits any regularity and predict the timing and magnitude of strong earthquakes in the near future. Cosmogenic nuclide 36 Cl dating is widely applied to fault scarp of limestone, and the height of fault scarp can reach as high as 15~20m. It is strongly suggested to make sure the bedrock scarp is exhumed by large earthquake events instead of geomorphic processes, based on field observation, and data acquired by terrestrial LiDAR and ground penetration radar (GPR). In addition, it is better for the fault surface to be straight and fresh with striations indicating recent fault movement. A series of bedrock samples are collected from the footwall in parallel to the direction of fault movement both above and below the colluvium, and each of them is~15cm long,~10cm wide, and~3cm thick. The concentrations of both cosmogenic nuclide 36 Cl and REE-Y determined from these samples vary with the heights in parallel to fault scarps. Accordingly, we identify the times of past large earthquakes, model the profile of 36 Cl concentration to seek the most realistic one, and determine the ages and slip of each earthquake event with the errors. In general, the errors for the numbers, ages, and slips of past earthquake events are ±1-2, no more than ±0.5-1.0ka, and ±0.25m, respectively.
Reference | Related Articles | Metrics