On January 8th, 2022, an MS6.9 earthquake occurred around Menyuan County(37.77°N, 101.26°E), Qinghai Province. The epicenter is located in the northeastern part of the Tibetan plateau, where the western section of the Lenglongling Fault meets the eastern section of the Tolaishan Fault. In order to know the spatial distribution of coseismic surface rupture zone as soon as possible, and determine the seismogenic structure, the post-earthquake GF-7 remote sensing images of the Menyuan MS6.9 earthquake were analyzed. Moreover, combining the interpretation of the GF-7 images and the field investigation, the distribution of the co-seismic surface rupture was determined and the typical coseismic landforms, and the image recognition features of various co-seismic landforms are interpreted and summarized. The results show that the earthquake produced two major surface rupture zones with a left-stepped oblique spatial arrangement. The main northern branch rupture distributes on the west side of the Lenglongling Fault, with a length of about 22km and a strike of 100°N~120°E, the secondary rupture of the southern branch distributes along the eastern section of the Tuolaishan Fault, with a length of about 4km and a strike of N90°E. The total length of the two rupture zones is about 26km.
Along the rupture zones, a series of typical left-lateral strike-slip coseismic landforms were formed, such as tensional fractures, tensional-shear fractures, pressure ridges, pressure bulges, left-lateral strike-slip gullies, as well as left-lateral strike-slip roadbeds, etc. We divided the surface rupture into six segments to conduct detailed observation and analysis, that is, the west of Daohe segment, Liuhuanggou segment, Honggou segment, Yongan River segment and Yikeshugou segment, from west to east among the main rupture zone of the north branch, as well as the secondary rupture zone of the south branch. In general, each co-seismic landform has its distinctive image characteristics, and we obtained them from the interpretation and summarization of the GF-7 images. The shear fractures located at the two ends of the main rupture and in the areas where the surface rupture is weak are zigzaggy on the remote sensing images, while the shear fractures located in the areas where the surface rupture is intense are shown as dark, wide and continuously smooth stripes; thrust scarps are represented on remote sensing images as shaded, narrow and slightly curved strips; the pressure ridges and pressure bulges exhibit black elliptical feature on the images that are parallel or at a smaller angle to the main rupture; tensional-shear fractures are displayed as black strips arranged in en echelon with a 30°~45° intersection angle with the main shear rupture, and their linear features are not as straight as those of shear ruptures yet are still distinct; the coseismic scarps formed on the ice are manifested in the images as traction bend and texture change. Based on the GF-7 images, the cumulative dislocations of typical sinistral landforms along the co-seismic surface rupture on Lenglongling Fault are interpreted and futher compared with the previous study. This is the first time of application of GF-7 to the strong earthquake geohazards monitoring since it was officially launched in August 2020. From this study, it can be seen that with its high resolution, GF-7 can be used to accurately identify faulted features. Not only it could provide information of the geometric roughness, complexity and segmentation of the fracture, but also can record clear dislocations of the landforms. The study of the GF-7 images in the 2022 Menyuan earthquake has showed that the GF-7 images can provide strong data support for the geology and geological hazard studies.
The most significant feature of active faults on remote sensing images is fault lineament. How to identify and extract fault lineament is an important content of active fault research. The rapid development of remote sensing technology has provided people with extremely rich remote sensing data, and has also created the problem of how to choose suitable data for fault interpretation. In the traditional fault interpretation, people pay more attention to high-resolution optical images and high-resolution DEM, but optical remote sensing images are greatly affected by factors such as weather condition, vegetation and human impacts, and the time and economic costs for obtaining high-resolution DEM are relatively high. Due to the low resolution, the medium-resolution DEM(such as Aster GDEM, SRTM1, SRTM3, etc.)is generally used to automatically extract structural lineament, and then analyze the overall regional structural features, but it is rarely used to visually interpret active faults. ALOS-PALSAR DEM is generated from SAR images acquired by the phased array L-band synthetic aperture radar mission sensor of the Japanese ALOS satellite. It is currently a free DEM with the highest resolution(resolution of 12.5m)and the widest coverage. Based on ALOS-PALSAR DEM and ArcGIS 10.4 software, this paper generates a hillshade map and visually interprets the fault lineaments in the West Qinling Mountains. When generating a hillshade map, we set the light azimuths to be oblique or orthogonal to the overall trend of the linear structures, the light azimuths to be consistent with the slope direction of the hillslope, and the light dips to be a medium incident angle. Based on the hillshade map generated from ALOS-PALSAR DEM, this paper summarizes the typical performance and interpretation markers of fault lineaments on the hillshade map(generated by DEM), and visually interprets the V-shaped fault system in West Qinling Mountains where the research on fault geometry is limited based on the interpretation markers. The results of the research are as follows: First, this study discovers a number of fault lineament zones, including the fault lineament located between the Lintan-Dangchang Fault and the Guanggaishan-Dieshan Fault, the NE-directed fault lineament zone between the Lixian-Luojiapu Fault and the Liangdang-Jiangluo Fault, and the arc-shaped dense fault lineament zones distributed south of the Hanan-Daoqizi Fault and the Wudu-Kangxian Fault; Second, this study completes the geometric distribution images of the known active faults, such as the western and eastern sections of the Lintan-Dangchang Fault, the western and eastern sections of the Liangdang-Jiangluo Fault; Third, fault lineaments in the West Qinling Mountains exhibit a “V” shape, with two groups of fault lineaments trending NW and NE, whose tectonic transformation mainly consists of two kinds: mutual cutting and arc transition. The Lintan-Dangchang Fault cuts the Lixian-Luojiapu Fault, the Lintan-Dangchang Fault and the Guanggaishan-Dieshan Fault are connected with the Liangdang-Jiangluo Fault in arc shape, and the Tazang Fault is connected with the Hanan-Daoqizi Fault in arc shape. The research results show that ALOS-PALSAR DEM has an outstanding capability to display fault lineaments due to its topographic attributes and strong surface penetration. In circumstances when the surface is artificially modified strongly, the spectrum of ground objects is complex and the vegetation is dense, the ALOS-PALSAR DEM can display fault lineament that cannot be displayed on optical remote sensing images, indicating that the medium-resolution DEM is an effective supplement to high-resolution optical remote sensing images in the fault lineament interpretation. The research results are of great significance for improving the geometric image of the V-shaped fault system in the West Qinling Mountains. It is also the basis for further research on fault geometry, kinematics, regional geodynamics and seismic hazard.
The Sanweishan Fault is located in the front of the northwest growth of the northern margin of Tibetan plateau, a branch fault of the Altyn Tagh Fault which extends to the northwest. The latest seismic activity of the Sanweishan Fault reflects the tectonic deformation characteristics of the northern plateau. Meanwhile, it is of great significance for the seismic risk assessment of Dunhuang and its adjacent areas to understand the characteristics of earthquake recurrence. The Sanweishan Fault runs along the western piedmont of the Sanwei Shan, with a total length of 175km. The fault is characterized by left-lateral strike-slip and reverse faulting, with local normal fault features. Based on the geometry, the fault can be divided into three segments, i.e. the Shuangta-Shigongkouzi, the Shigongkouzi-Shugouzi and the Shugouzi-Xishuigou segment from east to west. Previous studies about the paleoearthquakes on the Sanweishan Fault mainly focus on the middle and east segments of the fault, while the west segment of the fault has been less studied. Meanwhile, the available research does not involve the recurrence characteristics and possible magnitude of the paleoearthquakes. Based on high-resolution satellite images, we found that the main fault has grown toward the basin and formed fault scarps in the western segment of the Sanweishan Fault. We have carried out a detailed study on these fault scarps. Based on trench excavation and chronological study on the latest fault scarps, this paper determines the sequence of the paleoseismic events on the fault and discusses the recurrence characteristics and possible magnitude of earthquake for the Sanweishan Fault. In the western segment of the fault, through satellite image interpretation and field investigation, we found new fault scarps distributed on the alluvial fan in front of the mountain near Gedajing. We called it Dunhuang segment of the Sanweishan Fault. The activity characteristics of the fault scarps may reflect the latest seismic events in the western part of the Sanweishan Fault. Different from the sinistral strike slip of the main Sanweishan Fault, this fault segment shows the characteristics of thrust with low angle. According to the differential GPS survey, the height of the fault scarp is approximately 2.2m. The paleoseismic trench was excavated across the fault scarp. Based on the analysis of paleoseismological trenching and optical stimulated luminescence dating, two paleoseismic events are determined. Event E1 occurred at approximately(35.1±3.7)~(36.7±4.1)ka; event E2 occurred at approximately(76.5±8.8)~(76.7±8.3)ka. According to the strata offset and corresponding age, the vertical slip rate of the Sanweishan Fault is determined to be(0.03±0.01)mm/a, with a corresponding shortening rate of(0.09±0.01)mm/a. Together with the previous results, we consider that the Sanweishan Fault is characterized by segmentation. The middle and east segments may have the ability of independent rupture, and also the characteristics of cascading rupture with the Dunhuang segment. According to the existing results, we conclude that the recurrence interval for cascading rupture behavior on the Sanweishan Fault is approximately 40ka, which shows a characteristic of low slip rate and long-term recurrence. The best estimated magnitude is inferred to be in the range between MW7.1 and MW7.5 based on the empirical relationships between moment magnitude and rupture length.
Qilian Shan-Hexi Corridor is located at the northeastern margin of Tibetan plateau. Series of late Quaternary active faults are developed in this region. A number of strong earthquakes even large earthquakes occurred in history and present-day. In the past, the study of active faults in the area was mostly concentrated in the northern margin fault zone of the Qilian Shan on the south side of the corridor, while the research on the interior and the north side of the corridor basin was relatively rare. We found a new fault scarp in the northern part of the Baiyanghe anticline in Jiuxi Basin in 2010. It is an earthquake surface rupture zone which has never been reported before. In this paper, we carried out palaeoearthquake trench analysis on the newly found earthquake surface rupture zone and textual research of relevant historical earthquakes data. According to the interpretation of aerial photo and satellite image and field investigation, we found the surface rupture has the length of about 5km. The rupture shows as an arc-shaped line and is preserved intact comparably. The lower terrace and the latest flood alluvial fan are offset in addition to modern gullies. By differential GPS measurement, the height of the scarp is about 0.5~0.7m in the latest alluvial fan and about 1.5m in the T1 terrace. From the residual ruins along the earthquake rupture zone, we believe the surface rupture might be produced by an earthquake event occurring not long ago. In addition, the rupture zone locates in the area where the climate is dry and rainless and there are no human activities induced damages. These all provide an objective condition for the preservation of the rupture zone. The trench along the fault reveals that the surface rupture was formed about 1500 years ago, and another earthquake event might have happened before it. Based on the textural research on the historical earthquake data and the research degree in the area at present, we believe that the surface rupture is related to the Yumen earthquake in 365, Yumen Huihuipu earthquake in 1785 or another unrecorded historical earthquake event.
Using quantitative geomorphic factors for regional active tectonic evolution is becoming more and more popular. Qilian Mountains-Hexi Corridor which locates in the northern edge of Qinghai-Tibet plateau is the most leading edge of the plateau's northward extension. The uplift rate of all segments and the intensity of influence from tectonic activity are the important evidences to understand the uplift and extension of the plateau. Heihe River Basin is located at the northern piedmont of the western segment of Qilian Mountains, the development of the rivers is influenced by the tectonic activity of the Qilian Mountains, and the unique river morphology is important carriers of the regional tectonic uplift. Geomorphologic indexes such as hypsometric integral, geomorphologic comentropy and river longitudinal profiles were extracted by GIS tools with free access to the Shuttle Radar Topography Mission(SRTM)DEMs, and according to the different expression of the geomorphological indexes in the Heihe River Basin, we divided the drainage basin into two parts and further compared them to each other. Recent studies reveal that obvious differences exist in the landscape factors(hypsometric integral, geomorphology entropy and river profiles)in the east and west part of the Heihe Basin. The structural intensity of the west part is stronger than that of the east, for example, in areas above the main planation surface on the western part, the average HI value is 0.337 8, and on the eastern part the HI value is 0.355. Accordingly, areas under the main planation surface are just on the contrary, indicating different structural strength on both sides. Similar phenomenon exists in the whole drainage basins. Furthermore, by comparing the fitting river profiles with the real river profiles, differential uplift is derived, which indicates a difference between west and east(with 754m on the western part and 219m on the east). Comprehensive comparison and analysis show that the lithologic factors and precipitation conditions are less influencing on the geomorphic factors of the study area, and the tectonic activities, indicated by field investigation and GPS inversion, are the most important element for geomorphic evolution and development. The variation of the geomorphologic indexes indicates different tectonic strength derived from regional structures of the Qilian Shan.
It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet.
Jinta Nanshan Fault is an important fault in northeast front of Qing-Zang Plateau, and it is crucial for determining the eastern end of Altyn Tagh Fault. However, there is still debate on its significant strike-slip movement. In this paper, we study the Late Quaternary activity of Jinta Nanshan Fault and its geological and geomorphic expressions by interpreting aerial photographs and high-resolution remote sensing images, surveying and mapping of geological and geomorphic appearances, digging and clarifying fault profiles and mapping deformation characteristics of micro-topographies, then we analyze whether strike-slip activity exists on Jinta Nanshan Fault. We get a more complete fault geometry than previous studies from most recent remote sensing images. Active fault traces of Jinta Nanshan mainly include 2 nearly parallel, striking 100°~90° fault scarps, and can be divided into 3 segments. West segment and middle segment form a left stepover with 2~2.5km width, and another stepover with 1.2km width separates the middle and east segment. We summarize geomorphic and geologic evidence relating to strike slip activity of Jinta Nanshan Fault. Geomorphic expressions are as follows:First, fault scarps with alternating facing directions; second, sinistral offset of stream channels and micro-topographies; third, pull-apart basins and compressive-ridges at discontinuous part of Jinta Nanshan Fault. Geologic expressions are as follows:First, fault plane characteristics, including extremely high fault plane angle, unstable dip directions and coexistence of normal fault and reverse fault; second, flower structures. Strike-slip rate was estimated by using geomorphic surface age of Zheng et al.(2013)and left-lateral offset with differential GPS measurements of the same geomorphic surface at field site in Fig. 4e. We calculated a strike-slip rate of (0.19±0.05)mm/a, which is slightly larger than or almost the same with vertical slip rate of (0.11±0.03)mm/a from Zheng et al.(2013). When we confirm the strike-slip activity of Jinta Nanshan, we discuss its potential dynamic sources:First, eastern extension of Altyn Tagh Fault and second, strain partitioning of northeastward extension of Qilian Shan thrust belt. The first one is explainable when it came to geometric pattern of several E-W striking fault and eastward decreasing strike slip rate, but the former cannot explain why the Heishan Fault, which locates between the the Altyn Tagh Fault and Jinta Nanshan Fault, is a pure high angle reverse fault. The latter seems more explainable, because oblique vectors may indeed partition onto a fault and manifest strike-slip activity.
The Gulang M8.0 great earthquake occurred in 1927, many places in Gulang and adjacent areas had suffered destruction in various degrees. So far, divergences exist in the former studies on its seismogenic structure. It is known that clustered small earthquakes often occur in vicinities of fault plane of large earthquake. In this study, the precisely relocated earthquakes which occurred near the earthquake rupture zone between 1985 and 2012 are used, and two strip-shaped zones of clustered small earthquakes are chosen according to the previous studies of the causative structure of this earthquake. Based on the simulated annealing and Gauss-Newtonian nonlinear inversion algorithms, we obtained fault plane parameters of the earthquake such as strike, dip, and location using data of densely concentrated small events. On this condition, rake angles of the fault plane are further inferred from regional tectonic stress parameter. Then we discussed briefly the seismogenic environment and causal mechanism of the earthquake, combined with the results of deep tectonics and surface investigations. The focal fault we inverted locates within the meizoseismal area (intensity Ⅺ)of the Gulang M8.0 in 1927, suggesting that the focal fault obtained by inversion is possibly the causative structure of this earthquake. Besides, we found a clustered zone of small earthquakes near the south-central part of the main fault, and a fault plane could be derived from them, which we think might be a tensional seismic fault developed on the main fault when the whole earthquake-hit region rotated counterclockwise during the big earthquake.
An earthquake with MS 6.6 occurred near the border between Minxian and Zhangxian counties in southeastern Gansu Province on July 22, 2013. This earthquake caused serious personnel casualties and property damages. According to the field investigation, the intensity of the epicenter area is about Ⅷ, the causative structure is a branch fault of the eastern segment of Lintan-Dangchang active fault.The southeastern region of Gansu Province is located at the eastern boundary of Tibetan active block. A series of strike-slip faults with thrust components are developed and their combination is complicated and a series of strong or even large earthquakes occurred in this area in the history and present-days, and one of them is the Luqu earthquake occurring in 842 AD at the boundary of Han and Tibet area(now the southeastern area of Gansu Province). The earthquake caused seismic rupture, spring gushing, landslip in the Minshan Mountains and countercurrent of the Taohe River for three days. According to the detail textual research of historical references and field investigation, the epicenter area of this earthquake locates at the Guanggaishan-Dieshan mountain area, at the border area between Luqu County, Zhuoni County and Diebu County in the Gannan Tibetan Autonomous Prefecture. The date of the Luqu earthquake is possibly on the 24th day of the twelfth month of the second year of Huichang Reign in Tang Dynasty, that is, on January 31 or 27, 843 AD, and the magnitude of this earthquake is about 7~7 1/2 , the intensity near the epicenter area is about nine to ten. There are three late Quaternary active fault zones of thrust with left-lateral components, namely, Lintan-Dangcang Fault, Guanggaishan-Dieshan Fault and Diebu-Bailongjiang Fault. According to the comparative analysis of the field investigation of active faults in recent years and present seismic activity, we think that Luqu earthquake is the result of new activity of Guanggaishan-Dieshan Fault, the causative fault of this earthquake. This fault is an important branch fault of the eastern segment of northern boundary faults of Bayan Har block(Eastern Kunlun Fault zone), a main activity area of large earthquakes with magnitude larger than 7 in Chinese continent in the recent 10 years, and has the tectonic condition to generate M≥7 large earthquakes.
In recent years,many big earthquakes(M≥7) struck China and other nations.These big earthquakes may indicate that the earth is in a globally seismic active period.Therefore,in order to mitigate future earthquake disasters,the assessment of future big earthquake risk for major active boundary faults has been done as an important approach for mitigation.In this paper,our focus area is Northern Qilianshan-Hexi Corridor locating in northeastern of Qinghai-Tibet plateau.We collected and summarized the active faults' data sets systematically,e.g.geometrical characteristic,slip rate,rupture segmentation,latest rupture event and paleo-earthqakes.And based on these data sets,we use the methods of seismic gap identification and b value mapping to analyze the characteristics of historical earthquakes and b value.And then,high risk zones or faults of big earthquakes were identified synthetically.We think the Northern Yumushan Fault has the most probability of generating big earthquake in the future.Because the elapse time from the last event is long and b value along it is remarkably low,which betokens high stress.Meanwhile, attention should be paid too to the Jiayuguan Fault,where seismic gap and low b value zone exist too.
The northern Yumushan Fault located on the northern flank of Qilian fold system is an active fault in Holocene.The fault is about 60km long,trending NWW.It is a trust fault with left-lateral strike-slip component.The activity of the fault produced a series of scarps along the mountain front.The fault zone is divided into three segments,and the middle part is the most active.In this paper,palaeo-earthquake events on the fault are studied.With the study of trench profiles,two palaeo-earthquake events are determined.Event I occurred at 4.066±0.086ka BP,and event II is between 6.852±0.102ka BP and 6.107±0.082ka BP.The last palaeo-earthquake event on this fault occurred in 4.066±0.086ka BP. So,the northern Yumushan Fault is not the seismogenic fault of the M 7 1/2 Biaoshi earthquake of 180 AD.The elapse time from the latest event has been 4000yr,so the possibility of generating destructive earthquake in future should be recognized sufficiently.
We divide the north margin of Western Qingling Fault zone into six segments on the basis of new geology data,namely,Baoji,Tianshui,Wushan,Zhangxian,Huangxianggou and Guomatan segment from east to west.Each segment not only can rupture independently,but also can rupture together with others.The probability of seismic potential on these six segments and two combination segments is computed with the time-dependent seismic potential probability estimate method.We find from the result that,both the Huangxianggou and Zhangxian segments have the biggest probability of rupture in the future; and Tianshui segment is the second.If there will be a combined rupture,it is most likely to happen in Huangxianggou and Zhangxian segments,both of which have higher earthquake risk.We also compute b value along the fault zone.The image of b value indicates a high accumulated stress on the Huangxianggou and Tianshui segments.So we suppose that the two areas are the main locations where strong earthquakes may occur in the future.