Digital topographic analysis, an important means in the research of active tectonics and tectonic geomorphology, has increasingly become one of the principal tools in the identification of active tectonic features and understanding of the development of the earth’s surface process. Indoor interpretation of surface fault trace plays a key role in the digital topographic analysis as it can provide the foundation for setting priorities and defining strategies in the subsequent field investigation. At present, the extraction of fault traces is often realized by assisting the traditional visual interpretation through the image enhancement method. The relevant subjective assessments lead to the amount of work and usually cause different results due to the differences in the interpretation experience of actual operators. At the same time, the field of quantitative research on geomorphic parameters is evolving very rapidly with the advances in the popularity of high-resolution digital topographic data. Therefore, intelligent and automatic extraction of surface fault traces has gradually become a promising research direction. The methods based on machine learning often rely heavily on the good programming foundation of the operator, which is a visible technical barrier. We present a semi-automated method using an ArcGIS toolbox with a set of tools to extract surface fault traces based on geomorphic constraints. The Hutubi and Dushanzi faults are two typical thrust faults located on the northern piedmont of the Tianshan Mountains and are chosen as examples. Excellent exposure of the surface fault traces in these two regions permits detailed mapping of fault traces and deriving shape factors of faults with high-resolution DEMs(digital elevation models). Additionally, they are two of the most-studied thrust faults in this area. Large-scale geological and geomorphological mappings of them and numerous achievements have been published. This creates possibilities for us to conduct comparison analysis on different major methods. Based on typical morphology characteristics of fault scarps, appropriate geomorphic parameters are selected. In practice, reverse fault scarps are distinctly defined into forward and backward ones according to whether their dip is the same as that of the neighboring geomorphic surfaces. Based on two sets of geomorphic constraints,two approaches are then illustrated, including slope calculation, gully extraction, data density analysis and process modeling. Through a detailed comparison of the final extraction results and previous visual interpretations of remote sensing data and field geomorphic investigations, the validity of the method proposed in this study is proven. This method provides a set of tools with user-friendly interfaces to realize step-by-step interpretation and emphasizes the importance of field-based geomorphic constraints at the same time. Moreover, many subtle fault traces which have not been recognized before are simultaneously revealed in the Dushanzi research area. The high-resolution DEMs guarantee the realization of picking out finer bits of fault information. Compared to traditional ways of working, the method has the advantage of automatically delineating reverse fault traces on the earth’s surface. This advantage can significantly reduce the efforts to manually digitize geomorphic features and improve efficiency. But many basic manual adjustment options for recognizing target characteristics also need to be set in extraction, because the distinguishing criterion of fault scarp and surrounding geomorphic landforms vary among different areas. In different specific circumstances, users can manually adjust relevant parameters for the extraction during the modeling process. Generally speaking, the more detailed constraints, the more confidence in the final delineation of fault traces. Subjective judgments are therefore particularly critical for conducting extraction under complex backgrounds. But improving the degree of automation of the whole process is still an important study direction. Future work is thus recommended to employ machine learning and explore appropriate evaluation methods to search for the optimal solution of intermediate parameters.
Based on geological and geomorphologic characteristics of the surface faults acquired by field investigations and subsurface structure from petroleum seismic profiles, this paper analyzes the distribution, activity and formation mechanism of the surface faults in the east segment of Qiulitage anticline belt which lies east of the Yanshuigou River and consists of two sub-anticlines:Kuchetawu anticline and east Qiulitage anticline. The fault lying in the core of Kuchetawu anticline is an extension branch of the detachment fault developed in Paleogene salt layer, and evidence shows it is a late Pleistocene fault. The faults developed in the fold hinge in front of the Kuchetawu anticline in a parallel group and having a discontinuous distribution are fold-accommodation faults controlled by local compressive stress. However, trenching confirms that these fold-accommodation faults have been active since the late Holocene and have recorded part of paleoearthquakes in the active folding zone. The fault developed in the south limb near the core of eastern Qiulitage anticline is a low-angle thrust fault, likely a branch of the upper ramp which controls the development of the eastern Qiulitage anticline. The faults lying in the south limb of eastern Qiulitage anticline are shear-thrust faults, which are developed in the steeply dipping frontal limb of the fault-propagation folds, and also characterized by group occurrence and discontinuous distribution. Several fault outcrops are discovered near Gekuluke, in which the Holocene diluvial fans are dislocated by these faults, and trench shows they have recorded several paleoearthquakes. The surface anticlines of rapid growth and associated accommodation faults are the manifestations of the deep faults that experienced complex folding deformation and propagated upward to the near surface, serving as an indicator of faulting at depth. The fold-accommodation faults are merely local deformation during the folding process, which are indirectly related with the deep faults that control the growth of folds. The displacement and slip rate of these surface faults cannot match the kinematics parameters of the deeper fault, which controls the development of the active folding. However, these active fold-accommodation faults can partly record paleoearthquakes taking place in the active folding zone.
Fold-accommodation faults, secondary faults subordinated to the principal fold, are of much significance to accommodate strain variation in different parts of the rock during the evolution of folding. They are generally found in groups. And each of them has limited displacement and does not connect with the main detachment. After the geological survey in the East Qiulitage anticline zone, we find that the secondary faults accompanying fold scarps in this area are out-of-syncline thrusts and also give an instance of secondary faults occurring later than the folding. The fact that the secondary faults in fold scarps force the hanging wall to move upward relative to the footwall not only makes the terrace tilting and increases the slope of fold scarps, but also affects the authenticity in calculating regional shortening increment. The theoretical results show that if we do not consider the increased fold scarps height influenced by the secondary faults, the shortening increment is 51.42m. Otherwise, the value will be 45.23m and the difference between them is 6.19m. Because the deviation is 13.7% of the total shortening increment, the contributions of fold-accommodation faults to the calculation should not be ignored. The fold scarps in the northern and southern flanks of the East Qiultiage anticline depend on same bedrock type and formation mechanism. But three levels of fold scarps were found in the cross section of less than 300 meters in horizontal distance. This fact indicates that the active kink band of northern part is more closed because of higher compressive stress and faster lifting, which produce a large number of secondary faults in the fold scarps only in the northern flank. Therefore, the study of secondary faults is of significance in understanding of regional tectonic evolution and interaction between folds and faults. But there still exist many problems: 1)Limited by the observing scope, discontinuous distribution of secondary faults and variations of displacement along fault, we may underestimate the influence of secondary faults and the theoretical result should be the minimum. 2)What is the quantitative relationship among the increased height of fold scarps, the transfer slip and the dip of secondary faults?3)If secondary faults only grow in active kink band, how will they affect fold scarp?More examples of fold-accommodation faults are needed for further research.
How strain is distributed and partitioned on individual faults and folds on the margins of intermontane basins remains poorly understood. The Haermodun(Ha) anticline, located along the northern margin of the Yanqi Basin on the southeastern flank of the Tian Shan, preserves flights of passively deformed alluvial terraces. These terraces cross the active anticline and can be used to constrain local crustal shortening and uplift rates. Geologic and geomorphic mapping, in conjunction with high-resolution dGPS topographic surveys, reveal that the terrace surfaces are perpendicular to the fold's strike, and display increased rotation with age, implying that the anticline has grown by progressive limb rotation. We combine 10Be terrestrial cosmogenic nuclide(TCN) depth profile dating and optically stimulated luminescence(OSL) dating to develop a new chronology for the terraces along the Huangshui He since 550ka. Our in situ 10Be dating of fluvial gravels capping strath terraces suggests a relationship between the formation and abandonment of the terraces and glacial climate cycles since the middle-late Pleistocene. These data indicate that the formation of the four terraces occurred at ~550, ~430, ~350, and~60ka. We suggest that episodes of aggradation were facilitated by high sediment supply during glacial periods, followed by subsequent incision that led to abandonment of these terraces during deglaciation. Combining uplift and shortening distance with ages, we found the vertical uplift gradually decreased from 0.43 to 0.11mm/a, whereas the shortening rate was constant at ~0.3mm/a since the anticline began to grow. The shortening rates of the Ha anticline from geomorphology agree with current GPS measurements, and highlight the importance of determining slip rates for individual faults in order to resolve patterns of strain distribution across intermontane belts.
The Hejing reverse fault-fold zone locates on the northern margin of the Yanqi Basin which lies in the south Tianshan Mts.The zone has been growing since early-Quaternary till now.The Xiaermudeng and Haermodun anticlines in the western of Hejing reverse fault-fold are discussed in this paper.Based on the analysis of satellite images and DEM(digital elevation model)data with the spatial resolution of 25m as well as field observation,our results suggest that the Xiaermudeng and Haermodun anticlines have uplifted and propagated laterally during the late Quaternary.Stream-flow direction,topographic sections,decrease of elevation of wind gap and hypsometric analysis indicate that Xiaermudeng anticline uplifted preceding the Haermodun anticline.We also believe that the Xiaermudeng anticline grows laterally from middle to side and Haermodun anticline grows laterlally from west to east.The flows crossing the anticline have diverted eastward under the tectonic movement during the Quaternary,producing a series of wind gaps with straths lowering from west to east.In the Xiaermudeng anticline area,from middle to the side,the drainage density(Dd)is decreased(5.37km-1 to 2.65km-1 and 3.07km-1),and the slope of catchment is increased.The anticline of Haermodun shows a main deformation pattern of uplift and lateral propagation from west to east.The drainage density is decreased(3.87km-1 to 2.37km-1),the catchment has steep slope(4° to 6°),the hypsometric curve is from concave-convex to concave-down and the hypsometric integral (∫) is increased(0.45 to 0.76),Moreover,11 topographical cross-sections transecting the anticlines also reveal the lateral propagation from west to east of the Hejing reverse fault-fold zone.
Using the aerial remote sensing photos and Google earth satellite images,we find seven terraces at the both sides along the Kuytun River in Dushanzi active anticline area,northern piedmont of Tianshan.Based on the field investigation,we find that all these terraces are pedestal terraces.The rock of pedestal is Pliocene mud rock,and on the top of each terrace pedestal are the stratums of sandy gravel or sandy clay with 2.5~15m in thickness.We collected samples from deposits of all terraces for OSL(optically stimulated luminescence)geological dating using the SMAR(single-multiple-aliquot-regeneration)method on fine grains.We also performed dating using the 14 C method to the samples from the deposit of terrace T1 of the Kuytun River.The results show that the ages of all these deposits are the later phase of the Late Pleistocene.The accumulation time of the upper stratum for T1,T2,T3,T5,T6and T7 terraces is about 1.7ka,14.98ka,20.7~27.3ka,29.3~39.2ka,47~56ka and 103~118ka,respectively.Combining with late Quaternary climate change,we believe that the formation age for T1~T7 terraces of Kuytun River are 1.7ka,14ka,20ka,25ka,30ka,50ka and 100ka BP.Paleoearthquake data reveal that eight paleoearthquake events occurred on the Dushanzi-Anjihai reverse fault since about 25ka BP,respectively at 2ka,3.4ka,4.3ka,5.8ka,7.5ka,12.8ka,18ka and 24ka BP.Comparing the ages of paleoearthquakes and terraces,we find that the ages of the latest,the sixth,the seventh and the eighth paleoearthquake are roughly corresponding to the formation times of T1,T2,T3and T4 terraces,respectively.The other four paleoearthquake events occurred during the period after the formation of T2and before the formation of T1.In this time,no terraces developed along the Kuytun River,but the Kuytun River incised rapidly for 40m.We believe that the paleoearthquake events resulted in the fast uplift of Dushanzi active anticline on the hanging wall of Dushanzi-Anjihai Fault and the increase of riverbed slope and river incision ability,which led to the formation of river terraces or deep canyons.The terrace sequence in active anticline region may reflect the paleoearthquake sequence associated with fault or blind fault.