Table of Content

    20 August 2019, Volume 41 Issue 4
    Research Paper
    YAO Yuan, LI Shuai, HUANG Shuai-tang, JIA Hai-liang
    2019, 41(4):  803-820.  DOI: 10.3969/j.issn.0253-4967.2019.04.001
    Asbtract ( )   HTML   PDF (10048KB) ( )  
    References | Related Articles | Metrics
    Strike-slip fault plays an important role in the process of tectonic deformation since Cenozoic in Asia. The role of strike-slip fault in the process of mountain building and continental deformation has always been an important issue of universal concern to the earth science community. Junggar Basin is located in the hinterland of Central Asia, bordering on the north the Altay region and the Baikal rift system, which are prone to devastating earthquakes, the Tianshan orogenic belt and the Tibet Plateau on the south, and the rigid blocks, such as Erdos, the South China, the North China Plain and Amur, on the east. Affected by the effect of the Indian-Eurasian collision on the south of the basin and at the same time, driven by the southward push of the Mongolian-Siberian plate, the active structures in the periphery of the basin show a relatively strong activity. The main deformation patterns are represented by the large-scale NNW-trending right-lateral strike-slip faults dominated by right-lateral shearing, the NNE-trending left-lateral strike-slip faults dominated by left-lateral shearing, and the thrust-nappe structure systems distributed in piedmont of Tianshan in the south of the basin. There are three near-parallel-distributed left-lateral strike-slip faults in the west edge of the basin, from the east to the west, they are:the Daerbute Fault, the Toli Fault and the Dongbielieke Fault. This paper focuses on the Dongbielieke Fault in the western Junggar region. The Dongbielieke Fault is a Holocene active fault, located at the key position of the western Junggar orogenic belt. The total length of the fault is 120km, striking NE. Since the late Quaternary, the continuous activity of the Dongbielieke Fault has caused obvious left-lateral displacement at all geomorphologic units along the fault, and a linear continuous straight steep scarp was formed on the eastern side of the Tacheng Basin. According to the strike and the movement of fault, the fault can be divided into three segments, namely, the north, middle and south segment.
    In order to obtain a more accurate magnitude of the left-lateral strike-slip displacement and the accumulative left-lateral strike-slip displacement of different geomorphic surfaces, we chose the Ahebiedou River in the southern segment and used the UAV to take three-dimensional photographs to obtain the digital elevation model(the accuracy is 10cm). And on this basis, the amount of left-lateral strike-slip displacement of various geological masses and geomorphic surfaces(lines)since their formation is obtained. The maximum left-lateral displacement of the terrace T5 is(30.7±2.1)m and the minimum left-lateral displacement is(20.1±1.3)m; the left-lateral displacement of the terrace T4 is(12±0.9)m, and the left-lateral displacement of the terrace T2 is(8.7±0.6)m. OSL dating samples from the surface of different level terraces(T5, T4, T2 and T1)are collected, processed and measured, and the ages of the terraces of various levels are obtained. By measuring the amount of left-lateral displacements since the Late Quaternary of the Dongbielieke Fault and combining the dating results of the various geomorphic surfaces, the displacements and slip rates of the fault on each level of the terraces since the formation of the T5 terrace are calculated. Using the maximum displacement of(30.7±2.1)m of the T5 terrace and the age of the geomorphic surface on the west bank of the river, we obtained the slip rate of(0.7±0.11)mm/a; similarly, using the minimum displacement of(20.1±1.3)m and the age of the geomorphic surface of the east bank, we obtained the slip rate of(0.46±0.07)mm/a. T5 terrace is developed on both banks of the river and on both walls of the fault. After the terraces are offset by faulting, the terraces on foot wall in the left bank of the river are far away from the river, and the erosion basically stops. After that, the river mainly cuts the terraces on the east bank. Therefore, the west bank retains a more accurate displacement of the geomorphic surface(Gold et al., 2009), so the left-lateral slip rate of the T5 terrace is taken as(0.7±0.11)mm/a. The left-lateral slip rate calculated for T4 and T2 terraces is similar, with an average value of(0.91±0.18)mm/a. In the evolution process of river terraces, the lateral erosion of high-level terrace is much larger than that of low-level terrace, so the slip rate of T4 and T2 terraces is closer to the true value. The left-lateral slip rate of the Dongbielieke Fault since the late Quaternary is(0.91±0.18)m/a. Compared with the GPS slip rate in the western Junggar area, it is considered that the NE-trending strike-slip motion in this area is dominated by the Dongbielieke Fault, which absorbs a large amount of residual deformation while maintaining a relatively high left-lateral slip rate.
    MAO Ze-bin, CHANG Zu-feng, LI Jian-lin, CHANG Hao, ZHAO Jin-min, CHEN Gang
    2019, 41(4):  821-836.  DOI: 10.3969/j.issn.0253-4967.2019.04.002
    Asbtract ( )   HTML   PDF (10427KB) ( )  
    References | Related Articles | Metrics
    The 2014 Jinggu M6.6 earthquake attacked the Jinggu area where few historical earthquakes had occurred and little study has been conducted on active tectonics. The lack of detailed field investigation on active faults and seismicity restricts the assessment of seismic risk of this area and leads to divergent view points with respect to the seismotectonics of this earthquake, so relevant research needs to be strengthened urgently. In particular, some studies suggest that this earthquake triggered the activity of the NE-trending faults which have not yet been studied. By the approaches of remote sensing image interpretation, structural geomorphology investigation and trench excavation, we studied the late Quaternary activity of the faults in the epicenter area, which are the eastern margin fault of Yongping Basin and the Yixiang-Zhaojiacun Fault, and drew the conclusions as follows:
    (1)The eastern margin fault of Yongping Basin originates around the Naguai village in the southeastern margin of Yongping Basin,extending northward across the Qiandong, Tianfang, and ending in the north of Tiantou. The fault is about 43km long, striking near SN. The linear characteristic of the fault is obvious in remote sensing images. Structural geomorphological phenomena, such as fault troughs, linear ridges and gully dislocations, have developed along the faults. There are several dextral-dislocated gullies near Naguai village, with displacements of 300m, 220m, 146m, 120m and 73m, respectively, indicating that the fault is a dextral strike-slip fault with long-term activity. In order to further study the activity of the fault, a trench was excavated in the fault trough, the Naguai trench. The trench reveals many faults, and the youngest strata offseted by the faults are Holocene, with 14C ages of(1 197±51)a and(1 900±35)a, respectively. All those suggest that it is a Holocene active fault.
    (2)The Yixiang-Zhaojiacun Fault starts at the southeast of the Jinggu Basin, passes through Xiangyan, Yixiang, Chahe, and terminates at the Zhaojiacun. The total length of the fault is about 60km, and is a large-scale NE-trending fault in the Wuliangshan fault zone. Four gullies are synchronously sinistrally dislocated at Yixiang village, with the displacements of 340m, 260m, 240m and 240m, indicating that the fault is a long-term active sinistral strike-slip fault. A trench was excavated in a fault trough in Yixiang village. The trench reveals a small sag pond and a fault. The fault offsets several strata with clear dislocation and linear characteristic. The thickness of strata between the two walls of fault does not match, and the gravels are oriented along fault plane. The offset strata have the 14C age of(2 296±56)a, (3 009±51)a, and(4 924±45)a, respectively, and another two strata have the OSL age of(1.8±0.1)ka, (8.6±0.5)ka respectively, by which we constrained the latest paleoearthquake between(1.8±0.1)ka(OSL-Y01)and(378±48)a BP(CY-07). This again provides further evidence that the fault is a Holocene fault with long-term activity.
    (3)Based on the distribution of aftershocks and the predecessor research results, the 2014 Jinggu M6.6 earthquake and the M5.8, M5.9 strong aftershocks are regarded as being caused by the eastern margin fault of Yongping Basin, which is part of the Wuliangshan fault zone. The seismogenic mechanism is that the stress has been locked, concentrated and accumulated to give rise to the quakes in the wedge-shaped area near the intersection of the SN and NE striking faults, which is similar to the seismogenic mechanism in the southwest of Yunnan Province.
    LIU Rui, JIANG Da-wei, LI An, GUO Chang-hui, ZHANG Shi-min
    2019, 41(4):  837-855.  DOI: 10.3969/j.issn.0253-4967.2019.04.003
    Asbtract ( )   HTML   PDF (6926KB) ( )  
    References | Related Articles | Metrics
    When using river geomorphology to study tectonic deformation, it is often difficult to distinguish the same level geomorphology in areas with severe weathering. In this paper, we take the geomorphologic surfaces of the Qingyijiang river basin as an example and try to distinguish the geomorphic surfaces by the sediment features that make up them. In order to distinguish different geomorphic surfaces, the traditional particle-size analysis method, SOFM network method and system clustering analysis method are taken to classify 29 samples from different geomorphic surfaces. The classification results of the three methods are different to a certain extent. We analyzed and compared the classification results of the three methods in detail. The results show that the traditional particle size analysis method, SOFM network method and cluster analysis method all can distinguish the geomorphic surface of different genesis, besides, they also can distinguish low-level terraces(T1, T2)and high-level terraces(T3, T4)for different grades of river terraces. Furthermore, the results also show that SOFM network method and cluster analysis method can make a certain distinction for the low-level terraces(T1, T2), while the traditional particle size analysis method is difficult to distinguish them.
    In addition, we analyzed and compared the three methods from the classification results, the results presentation, the operation process, and the error transmission. The results suggest that the advantages and disadvantages of the three methods are obvious. From the perspective of the classification results, the three methods all can distinguish the river terraces and alluvial fans and can make certain discrimination for different levels of river terraces. From the presentation of the results, the result of SOFM network is simple and clear. From the operation process, the traditional particle-size analysis method is relatively cumbersome, and the SOFM network method and the cluster analysis method are relatively simple to operate. From the perspective of error transmission, the traditional particle-size analysis method calculates the partial particle size feature value of the sample, which has a certain loss for the particle size distribution information of the whole sample. The error of the clustering analysis method has cumulative features and the influence exists consistently. The classification results of the SOFM network are independent of each other, which effectively avoids the problem of such error transmission of clustering analysis method.
    Overall, the classification results of the SOFM network method are simple and clear, the operation is simple, and the error is small. It has stronger adaptability to identifying different levels of different geomorphic surfaces. The results of this study will provide a simple and effective means for distinguishing different levels of geomorphic surfaces.
    REN Guang-xue, LI Chuan-you, WU Chuan-yong, WANG Si-yu, ZHANG Hui-ping, REN Zhi-kun, LI Xin-nan
    2019, 41(4):  856-871.  DOI: 10.3969/j.issn.0253-4967.2019.04.004
    Asbtract ( )   HTML   PDF (10379KB) ( )  
    References | Related Articles | Metrics
    Influenced by the far-field effect of India-Eurasia collision, Tianshan Mountains is one of the most intensely deformed and seismically active intracontinental orogenic belts in Cenozoic. The deformation of Tianshan is not only concentrated on its south and north margins, but also on the interior of the orogen. The deformation of the interior of Tianshan is dominated by NW-trending right-lateral strike-slip faults and ENE-trending left-lateral strike-slip faults. Compared with numerous studies on the south and north margins of Tianshan, little work has been done to quantify the slip rates of faults within the Tianshan Mountains. Therefore, it is a significant approach for geologists to understand the current tectonic deformation style of Tianshan Mountains by studying the late Quaternary deformation characteristics of large fault and fold zones extending through the interior of Tianshan. In this paper, we focus on a large near EW trending fault, the Baoertu Fault (BETF) in the interior of Tianshan, which is a large fault in the eastern Tianshan area with apparent features of deformation, and a boundary fault between the central and southern Tianshan. An MS5.0 earthquake event occurred on BETF, which indicates that this fault is still active. In order to understand the kinematics and obtain the late Quaternary slip rate of BETF, we made a detailed research on its late Quaternary kinematic features based on remote sensing interpretation, drone photography, and field geological and geomorphologic survey, the results show that the BETF is of left-lateral strike-slip with thrust component in late Quaternary. In the northwestern Kumishi basin, BETF sinistrally offsets the late Pleistocene piedmont alluvial fans, forming fault scarps and generating sinistral displacement of gullies and geomorphic surfaces. In the bedrock region west of Benbutu village, BETF cuts through the bedrock and forms the trough valley. Besides, a series of drainages or rivers which cross the fault zone and date from late Pleistocene have been left-laterally offset systematically, resulting in a sinistral displacement ranging 0.93~4.53km. By constructing the digital elevation model (DEM) for the three sites of typical deformed morphologic units, we measured the heights of fault scarps and left-lateral displacements of different gullies forming in different times, and the result shows that BEFT is dominated by left-lateral strike-slip with thrust component. We realign the bended channels across the fault at BET01 site and obtain the largest displacement of 67m. And we propose that the abandon age of the deformed fan is about 120ka according to the features of the fan. Based on the offsets of channels at BET01 and the abandon age of deformed fan, we estimate the slip rate of 0.56mm/a since late Quaternary. The Tianshan Mountains is divided into several sub-blocks by large faults within the orogen. The deformation in the interior of Tianshan can be accommodated or absorbed by relative movement or rotation. The relative movement of the two sub-blocks surrounded by Boa Fault, Kaiduhe Fault and BETF is the dominant cause for the left-lateral movement of BETF. The left-lateral strike-slip with reverse component of BETF in late Quaternary not only accommodates the horizontal stain within eastern Tianshan but also absorbs some SN shortening of the crust.
    YU Xiao-hui, SHEN Jun, DAI Xun-ye, WANG Chang-sheng
    2019, 41(4):  872-886.  DOI: 10.3969/j.issn.0253-4967.2019.04.005
    Asbtract ( )   HTML   PDF (6939KB) ( )  
    References | Related Articles | Metrics
    The wedge-shaped deposit formed in front of fault scarp is called colluvial wedge. Repeated faulting by faults may produce multiple colluvial wedges, each of which represents a paleoseismic event. When there are two or more colluvial wedges, the new colluvial wedge is in sedimentary contact with the fault, while the old ones are in fault contact with the fault. The shape of colluvial wedge is usually in the form of horizontal triangle, and the sedimentary facies is usually of binary structure. The overall grain size decreases gradually from bottom to top. Soil layer generally develops on the top, and different types of soil are developed under different climate or soil environments. Another deposit in front of fault scarp is the sag pond graben. The graben in front of sag pond is generally a set of sedimentary assemblages of colluvial facies, alluvial diluvial facies and swamp facies. The area close to the fault, especially the main fault, is of colluvial facies, while the area away from the fault is of alluvial and pluvial facies and marshy facies. In an accumulative cycle, the size of the deposit decreases from bottom to top, and soil layers develop on the top or surface. Multiple pile-ups may be a marker for identifying multiple faulting events. The pile-up strata such as colluvial wedge and fault sag pond can be used as identification markers for paleoseismic events. Colluvial wedge and sag pond, as the identification markers for paleoearthquake, have been well applied to practical research. However, there is still lack of detailed research on the lithological structure and genetic evolution in the interior of colluvial wedge and sag pond sediment, meanwhile, there is still a deficiency in the analysis of the completeness and the regional characteristics of paleoearthquake by using colluvial wedge and sag pond sediment. This paper discusses the method of identifying paleoearthquake by using sag pond sediments and colluvial wedge. We discuss the lithologic combination and sedimentary evolution of sag pond and choose the surface rupture zone of the 1679 M8.0 earthquake on the Xiadian Fault as the research area. In this paper, the distribution range and filling sequence of sag pond are analyzed, using borehole exploration. Four paleoearthquake events are identified since 25ka to 12ka, based on the sag pond sediments and colluvial wedge. The in situ recurrence interval of these seismic events is 480a, 510a, 7 630a and 2 830a, respectively. The lithologic combination and sedimentary evolution law of the sag pond sediments caused by an ancient earthquake are discussed. The sag pond distribution range and filling sequence are determined by the surface elevation survey and drilling exploration. The exploratory trench exposes the sag pond filling strata sequence and lithologic combination. Based on this, we analyze the three sedimentation stages of sag pond sediments formed by a paleoearthquake event near the earthquake fault. It is believed that the filling sequence is composed from bottom to top of the colluvial wedge, the erosion surface or unconformity surface, the fine detrital sediments(containing biological debris)and paleosols. For the fault-sag ponds formed by active faults, the paleoearthquakes occurred near the unconformity or erosion surface of the sediments of the fault-plug ponds. An ancient earthquake event includes the combination of organic deposits such as sediments, clastic deposits, bioclasts, burrow, plant roots and other organic deposits on the vertical scour surface or unconformity. The time interval between two paleoseismic events is defined by two adjacent unconformities(or scour surfaces). According to the vertical facies association and chronological test results of the sediments in the Pangezhuang trough of the Xiatan Fault, four paleo-seismic events are identified since the late Pleistocene period of 25~12ka BP, with recurrence intervals of 480a, 510a, 7 630a and 2 830a, respectively.
    Research Paper
    XIE Zhang-di, HAN Zhu-jun
    2019, 41(4):  887-912.  DOI: 10.3969/j.issn.0253-4967.2019.04.006
    Asbtract ( )   HTML   PDF (6651KB) ( )  
    References | Related Articles | Metrics
    On October 17, 2014, a MS6.6 earthquake occurred in Jinggu, Yunnan. The epicenter was located in the western branch of Wuliang Mountain, the northwest extension line of Puwen Fault. There are 2 faults in the surrounding area, one is a sinistral strike-slip and the other is the dextral. Two faults have mutual intersection with conjugate joints property to form a checkerboard faulting structure. The structure of the area of the focal region is complex. The present-day tectonic movement is strong, and the aftershock distribution indicates the faulting surface trending NNW. There is no obvious surface rupture related to the known fault in the epicenter, and there is a certain distance from the surface of the Puwen fault zone. Regional seismic activity is strong. In 1941, there were two over magnitude 7.0 earthquakes in the south of the epicenter of Jinggu County and Mengzhe Town. In 1988, two mainshock-aftershock type earthquakes occurred in Canglan-Gengma Counties, the principal stress axes of the whole seismic area is in the direction of NNE. Geological method can be adopted to clarify the distribution of surficial fracture caused by active faults, and high-precision seismic positioning and spatial distribution characteristics of seismic sequences can contribute to understand deep seismogenic faults and geometric features. Thus, we can better analyze the three-dimensional spatial distribution characteristics of seismotectonics and the deep and shallow tectonic relationship. The focal mechanism reveals the property and faulting process to a certain extent, which can help us understand not only the active property of faults, but also the important basis for deep tectonic stress and seismogenic mechanism. In order to study the fault characteristic of the Jinggu earthquake, the stress field characteristics of the source area and the geometric parameters of the fault plane, this paper firstly uses the 15 days aftershock data of the Jingsuo MS6.6 earthquake, to precisely locate the main shock and aftershock sequences using double-difference location method. The results show that the aftershock sequences have clustering characteristics along the NW direction, with a depth mainly of 5~15km. Based on the precise location, calculations are made to the focal mechanisms of a total of 46 earthquakes including the main shock and aftershocks with ML ≥ 3.0 of the Jinggu earthquake. The double-couple(DC)component of the focal mechanism of the main shock shows that nodal plane Ⅰ:The strike is 239°, the dip 81°, and the rake -22°; nodal plane Ⅱ, the strike is 333°, the dip 68°, and the rake -170.31°. According to focal mechanism solutions, there are 42 earthquakes with a focal mechanism of strike-slip type, accounting for 91.3%. According to the distribution of the aftershock sequence, it can be inferred that the nodal plane Ⅱ is the seismogenic fault. The obtained focal mechanism is used to invert the stress field in the source region. The distribution of horizontal maximum principal stress orienation is concentrated. The main features of the regional tectonic stress field are under the NNE-SSW compression(P axis)and the NW-SE extension(T axis)and are also affected by NNW direction stress fields in the central region of Yunnan, which indicates that Jinggu earthquake fault, like Gengma earthquake, is a new NW-trending fault which is under domination of large-scale tectonic stress and effected by local tectonic stress environment. In order to define more accurately the occurrence of the fault plane of the Jinggu earthquake, with the precise location results and the stress field in the source region, the global optimal solution of the fault plane parameters and its error are obtained by using both global searching simulated annealing algorithm and local searching Gauss-Newton method. Since the parameters of the fault plane fitting process use the stress parameters obtained by the focal mechanism inversion, the data obtained by the fault plane fitting is more representative of the rupture plane, that is, the strike 332.75°, the dip 89.53°, and the rake -167.12°. The buried depth of the rupture plane is 2.746km, indicating that the source fault has not cut through the surface. Based on the stress field characteristics and the inversion results of the fault plane, it is preliminarily believed that the seismogenic structure of the Jinggu earthquake is a newly generated nearly vertical right-lateral strike-slip fault with normal component. The rupture plane length is about 17.2km, which does not extend to the Puwen fault zone. Jinggu earthquake occurred in Simao-Puer seismic region in the south of Sichuan-Yunnan plate. Its focal mechanism solution is similar to that of the three sub-events of the Gengma earthquake in November 1988. The seismogenic structure of both of them is NW-trending and the principal stress is NE-SW. The rupture plane of the Jinggu main shock(NW direction)is significantly different from the known near NS direction Lancang Fault and the near NE direction Jinggu Fault in the study area. It is preliminarily inferred that the seismogenic structure of this earthquake has a neogenetic feature.
    ZHANG Zhi-wei, LONG Feng, WANG Shi-yuan, GONG Yue, WU Peng, WANG Hui, JIANG Guo-mao
    2019, 41(4):  913-926.  DOI: 10.3969/j.issn.0253-4967.2019.04.007
    Asbtract ( )   HTML   PDF (7081KB) ( )  
    References | Related Articles | Metrics
    Small earthquakes have been recorded in Yibin area, Sichuan Province since 1970, the frequency and intensity of seismicity have shown an increasing trend in recent ten years, and the earthquakes are distributed mainly in Changning, Gongxian and Junlian areas. Based on the seismic data from January 2008 to May 2015 recorded by Sichuan and Yunnan regional networks and Yibin local network, seismicity analysis, precise location and velocity structure inversion for earthquakes in Yibin area are carried out, the three-dimensional spatial distribution of seismic activity and the velocity structure at different depths in this region are investigated, trying to analyze the seismic activity law and seismogenic mechanism in Yibin area.
    The earthquake relocation result shows that the spatial cluster distribution of earthquakes is more obvious in Yinbin area, the earthquakes are concentrated in Changning-Gongxian and Gongxian-Junlian regions. The seismic activity presents two dominant directions of NW and NE in Changning-Gongxian region, and shows asymmetric conjugate distribution, the long axes of NW-trending and NE-trending seismic concentration area are about 30km and 12km respectively, and the short axes are about 5km. There is a seismic sparse segment near Gongxian, the frequency and intensity of seismicity in the southeast side are obviously higher than that in the northwest side, and the earthquakes with larger magnitude are relatively deep, the focal depth is gradually shallower with the distance away from Gongxian. Seismic activity is sparse in the west and dense in the east in Gongxian-Junlian region, the predominant direction of earthquakes in the seismic dense area of the eastern segment is NE. Seismic activity extends in opposite direction in the easternmost part of the two earthquake concentrated area.
    The P-wave velocity structure at different depths in the study area is obtained using joint inversion method of source and velocity structure. In view of the predominant focal depth in this region, this paper mainly analyzes the velocity structure of the upper crust within 10km. Within this study area, the P-wave velocity of earthquake concentration areas is relatively high within 10km of the predominant focal depth, especially in the northwest of Gongxian and eastern Junlian area, the P-wave velocity on the southeast of Gongxian increases gradually with depth, especially at 6km depth. These high-velocity zones are generally related to brittle and hard rocks, where the stress is often concentrated.
    Comparing earthquake distribution and velocity structure, seismic activity in this area mainly occurs in high-low velocity transition areas, the inhomogeneity of velocity structure may be one of the factors controlling earthquake distribution. The transition zone of high and low velocity anomalies is not only the place where stress concentrates, but also the place where the medium is relatively fragile, such environment has the medium condition of accumulating a large amount of strain energy and is prone to fracture and release stress.
    WEN Xiang, ZHOU Bin, SHI Shui-ping, QIN Jian, LI Jia-ning, HE Yan, YAN Chun-heng, LUO Yuan-peng
    2019, 41(4):  927-943.  DOI: 10.3969/j.issn.0253-4967.2019.04.008
    Asbtract ( )   HTML   PDF (8550KB) ( )  
    References | Related Articles | Metrics
    Northwest Guangxi is located in the Youjiang fold belt and the Hunan-Guangxi fold belt of secondary structure unit of South China fold system. The South China fold was miogeosyncline in the early Paleozoic, the Caledonian fold returned and transformed into the standard platform, and the Indosinian movement ended the Marine sedimentary history, which laid the basic structural framework of this area. Since the neotectonic period, large areas have been uplifted intermittently in the region and Quaternary denudation and planation planes and some faulted basins have been developed. Affected by the strong uplift of Yunnan-Guizhou plateau, the topography of the region subsides from northwest to southeast, with strong terrain cutting and deep valley incision. Paleozoic carbonate rocks and Mesozoic clastic rocks are mainly exposed on the earth's surface, and its geomorphology is dominated by corrosion and erosion landforms. The dating results show that most of the structures in northwest Guangxi are middle Pleistocene active faults, and the movement mode is mainly stick-slip. According to the seismogeological research results of the eastern part of the Chinese mainland, the active faults of the middle Pleistocene have the structural conditions for generating earthquakes of about magnitude 6. In the northwest Guangxi, the crustal dynamic environment and geological structure are closely related to Sichuan and Yunnan regions. Under the situation that magnitude 6 earthquakes occurred successively in Sichuan and Yunnan region and magnitude 7 earthquakes are poised to happen, the risk of moderately strong earthquakes in the northwest Guangxi region cannot be ignored. Based on the analysis of deep structure and geophysical field characteristics, it is concluded that the Tian'e-Nandan-Huanjiang area in the northwestern Guangxi is not only the area with strong variation of the Moho surface isobath, but also the ML3.0 seismic gap since September 2015, and the abnormal low b value area along the main fault. Regions with these deep structural features often have the conditions for moderately strong earthquakes. The paper systematically analyzes the spatial and temporal distribution features and mechanism of regional gravitational field and horizontal crust movement and further studies and discusses the changes of regional gravitational field, crustal horizontal deformation and interaction between geologic structure and seismic activity based on 2014-2018 mobile gravity measurements and 2015-2017 GPS observation data in the northwestern Guangxi. The results show that:1)On July 15, 2017, a MS4.0 earthquake in Nandan happened near the center of four quadrants of changes of gravity difference, and the center of abnormal area is located at the intersection of the Mulun-Donglang-Luolou Fault, the Hechi-Nandan Fault and the Hechi-Yizhou Fault. The dynamic graph of differential scale gravitational field reflects the gravity changes at the epicenter before and after the Nandan earthquake, which is a process of system evolution of "local gravity anomaly to abnormal four-quadrant distribution features → to earthquake occurring at the turning point of gravity gradient zone and the zero line to backward recovery variation after earthquake". Meanwhile, according to the interpretation of focal mechanism of the Nandan earthquake, seismogram and analysis of seismic survey results, the paper thinks that the four-quadrant distribution of positive and negative gravity, which is consistent with the effect of strike-slip type seismogenic fault before Nandan earthquake, demonstrates the existence of dextral strike-slip faulting; 2)The pattern of spatial distribution of gravitational field change in northwestern Guangxi is closely related to active fault. The isoline of cumulative gravity generally distributes along Nandan-Hechi Fault and Hechi-Yizhou Fault. The gravity on both sides of the fault zone is different greatly, and gradient zone has influences on a broad area; the spatial distribution of deformation field is generally featured by horizontal nonuniformity. Tian'e-Nandan-Huanjiang area is located at the high gradient zone of gravity changes and the horizontal deformation surface compressional transition zone, as well as near the intersection of Hechi-Yizhou Fault, Hechi-Nandan Fault and Du'an-Mashan Fault; 3)The geometric shape of gravitational field in northwestern Guangxi corresponds to the spatial distribution of horizontal crustal movement, which proves the exchange and dynamic action of material and energy in the region that cause the change and structural deformation of fault materials and the corresponding gravity change on earth's surface. The recent analysis of abnormal crustal deformation in northwestern Guangxi shows that Tian'e-Nandan-Huanjiang is a gradient zone of abnormal gravity change and also a horizontal deformation surface compressional transition zone. It locates at the section of significant change of Moho isobaths, the seismicity gap formed by ML3.0 earthquakes and the abnormal low b-value zone. According to comprehensive analysis, the region has the risk of moderately strong earthquake.
    WANG Zhen-nan, LU Ren-qi, XU Xi-wei, HE Deng-fa, CAI Ming-gang, LI Ying-qiang, LUO Jia-hong
    2019, 41(4):  944-959.  DOI: 10.3969/j.issn.0253-4967.2019.04.009
    Asbtract ( )   HTML   PDF (10881KB) ( )  
    References | Related Articles | Metrics
    The Pengxian blind fault is a typical active fault in the central Longmen Shan front belt. It has important reference value for understanding the growth mode and process of the eastern Tibetan plateau. Because the fault is covered by the thick Upper Cenozoic strata in the western Sichuan Basin, its three-dimensional spatial distribution, structural style and formation mechanism remain unclear. In this paper, based on several high-resolution 3-D seismic reflection profiles, together with near-surface geological data and borehole data, we investigate the structural geometry of the Pengxian blind fault and build a 3-D model based on the results. We analyze the shape and scale of underground spatial distribution of the fault through a three-dimensional fault model. According to the theory of fault-related fold and fold-accommodation fault, this paper discusses the forming mechanism of the Pengxian buried structures. The shallow tectonic deformation in front of Longmen Shan is closely related to the detachment layer of the Middle and Lower Triassic, and this detachment layer f1 horizontally propagates into the Longquanshan anticline in the western Sichuan Basin. The Pengxian buried fault is a typical fault-bend fold and the f1 horizontally propagates into the western Sichuan Basin with a fault slip of 3.5km. The Pengxian blind fault is a high angle(50°~60°)thrust fault developed in the front wing of the kink-band zone, striking NE-SW, with a total length of~50km; But the fault is not connected with the Dayi buried fault in the south section of Longmen Shan. They are two different faults, and this defines the scale of the Pengxian blind fault. This limitation makes sense for analyzing and evaluating the magnitudes of potential earthquake. All above study provides research basis for further analysis of the potential seismic risk in this area. The Pengxian blind fault is parallel to the anticlinal axis with small amount of offset as a fold-accommodation fault. We believe that the fault formation is related to the fold deformation of the fold front limb. The study reveals the geometry, kinematics and formation mechanism of the Pengxian active fault, and provides a basis for further analysis of fault activity and hazard. Therefore, there is little possibility of strong earthquakes at the Pengxian blind fault due to its formation mechanism of the fault which is generally characterized by fold deformation and shortening deformation. In this paper, we discuss the location of Pengxian blind fault in the middle of Longmen Shan and Sichuan Basin. Because the Pengxian buried structures are in the transition area, the shortening amount in Pengxian indicates that the absorption in the basin is quite limited. It reflects the blocking effect of Sichuan Basin. In the study, we find that the relationship between folds, faults and sediments is an important part of tectonic interpretation; the theory of fault-related fold and fold-accommodation fault is well used for analysis. This would have great significance for the study of structural deformation, which can help to build a three-dimensional model of fault.
    FU Qiang, LIU Tian-you, MA Long, YANG Yu-shan, YAN Mao-du
    2019, 41(4):  960-978.  DOI: 10.3969/j.issn.0253-4967.2019.04.010
    Asbtract ( )   HTML   PDF (8090KB) ( )  
    References | Related Articles | Metrics
    Isostasy is used to describe a condition to which the Earth's crust and mantle tend, in the absence of disturbing forces. Eliminating the gravity effect of crust, isostatic gravity anomalies contain abundant geological structure information, which can be extracted by edge detection methods of gravity or magnetic anomalies. In order to accurately obtain the edge information, a great variety of methods, such as analytical signal amplitude, tilt angle, theta map θ, etc., have been proposed by domestic and international scholars, and many significant advances have been made in recent days. However, each method has its advantages and disadvantages. Wavelet transform is an effective method developed in recent years. It has the enhanced noise resistance and a feature of multi-scale decomposition, and can be used to identify more detailed information of edge. Here with the aim of demonstrating its effectiveness in faults detection, we established a theoretical geological model, which consists of five geological bodies. The geological bodies with different density present a fault zone and the areas on its sides, as well as two geological bodies with different geological properties. We calculated the gravity anomalies caused by this model, in addition, we added 5% Gaussian noise to the gravity anomalies for a comparative analysis to analyze the effects of wavelet transform on edge detection. Finally, we applied wavelet transform method to the decomposition of isostatic gravity anomalies, obtained 1st to 5th order wavelet transform details of the gravity anomalies, and compared with the well-studied faults in the Qaidam Basin and its adjacent areas. The results obtained by wavelet transform matched well with the known faults, the anomalies of different order denote the location of different fault zone(e.g. the Tanan Fault is nearly invisible on the original and the first order isostasy gravity anomalies map, but is well expressed on the second order isostasy gravity anomalies map; The apparent details of the 4th and 5th indicate that faults in front of the Saishiteng-Xitieshan Shan are deep faults and they are likely to distribute continuously in the deep underground). Besides, we calculated the estimated depth of isostasy gravity anomalies of different order through power spectrum analysis as well, finding that different faults extend to different depth. For example, the Danghe-Nanshan Fault and the Southern Fault in the middle Qilian Shan are 10km in depth approximately, but the faults in front of the Saishiteng-Xitieshan Shan are more than 70km in depth. In addition, we made two comparative studies, the first one is comparing the results mentioned above with the result through wavelet transform of Bouguer gravity anomalies. The second one is comparing with the results through other edge detection methods of isostatic gravity anomalies. In spite of the inconformity between anomalies and the faults to some extent, which is likely caused by the change of lithology or faults distribution in the deep underground, we finally found that:more subtle details induced from faults can be detected from isostatic gravity anomalies by using wavelet transform because of its feature of multi-scale decomposition. The wavelet transform method is proved to be more accurate and reliable(at least in the Qaidam Basin and its adjacent areas)comparing with other methods.
    ZHANG Yan-hui, LI Shi-wen, WENG Ai-hua, ZHANG Su-qin, YANG Yue, LI Jian-ping, TANG Yu
    2019, 41(4):  979-995.  DOI: 10.3969/j.issn.0253-4967.2019.04.011
    Asbtract ( )   HTML   PDF (4733KB) ( )  
    References | Related Articles | Metrics
    Geomagnetic depth sounding is an effective method for exploring deep structure of the earth. There are dense geomagnetic observatories in China, which lays a foundation to obtain the electrical structure of the transition zone and the upper part of the lower mantle beneath China. However, the corresponding C-responses estimation methods which are applied now cannot get the stable C-responses for many observatories. Thus, a large amount of geomagnetic data is wasted. Therefore, in order to make full use of the geomagnetic data, the estimation of C-responses needs to be systematically studied. Because of the heterogeneous characteristics of the data quality of China's geomagnetic observation data, such as the quality of the data, the length of the record, the types of data(absolute and relative observation)and data discontinuity condition, many geomagnetic data are abandoned, this limits the resolution of mantle electrical structure studies. In this paper, the following techniques are used to improve the stability of the data and increase the number of the available geomagnetic observatories, in the meantime, the stability of the C-responses curves can be effectively improved:1)obtaining the stable spectrums of the different components for each frequency by the BIRRP(Bounded Influence, Remote Reference Processing)software, and using the global smoothing technique to suppress data noise on geomagnetic data; 2)As for the geomagnetic data which only records the relative variation of the D, H and Z components and doesn't have the baseline value, the horizontal component is decomposed by the approximate estimation method to obtain the C-responses of the relative variation data, and then the relative variation data is used directly for the C-responses estimation; 3)the effects of discontinuous data and short-record data on C-responses estimation are discussed. Under normal conditions, the discontinuity of the data has little influence on C-responses, and when the data length is shorter than 5 years, we can hardly get the available C-responses whose periods are longer than 40 days. All these experiments can provide a basis for the data processing of these kinds of observation data; 4)for coastal observatories, the ratio method is used to eliminate the influence of ocean effect on the C-responses functions. After carefully processing the data of more than 100 geomagnetic observatories in China by the above techniques, the stable C-responses function of 42 observatories is finally obtained, among them, the number of the observatories with C-responses ranging from 1.3 to 113.7 days is 24, and the observatories with C-responses ranging from 1.3 to 42.6 days are 18. The techniques of this paper can process heterogeneous data well and obtain more stable C-responses, which provides more basic data for high-resolution geomagnetic depth sounding inversion researches in China.
    DAI Wen-hao, ZHOU Yong-sheng
    2019, 41(4):  996-1011.  DOI: 10.3969/j.issn.0253-4967.2019.04.012
    Asbtract ( )   HTML   PDF (13147KB) ( )  
    References | Related Articles | Metrics
    The transition from microscopic brittle deformation to microscopic plastic deformation is called brittle-plastic transition, which is considered as a key layer for determining the limit of lower continental crust seismicity. The depth and deformation mechanism of the brittle-plastic transition zone is controlled mainly by temperature. Besides, the strain rate and fluid pore pressure also affect the transition during the different deformation stages at the seismic cycle.
    In this paper, microstructure observation of catalcastic samples collected from the Red River Fault was carried out using optical polarized microscopy and scanning electron microscopy. The morphology, microstructures of deformation characteristics, mineral composition, water-rock reaction, pressure solution, exsolution, crack healing in the samples were systematically observed. The mineral components quantitative analyses were examined using the EDS. Water-rock reaction and pressure solution were systematically observed under SEM. The fabric of the main minerals in the samples was measured using electron backscattered diffraction(EBSD). Based on these analyses, the deformation mode was setup for the brittle-plastic transition zone of the fault during the post-seismic relaxation period.
    Both brittle deformation and plastic deformation were developed in the cataclastic samples. EBSD data shows that the c axial fabrics of quartz present low-temperature plastic deformation characteristics. The feldspar deformed as cataclastic rock, and the micro-fracture in feldspar was healed by static recrystallized quartz and calcite veins. The calcite vein underwent plastic deformation, which represents the post-seismic relaxation deformation.
    Based on the analysis of deformation mechanism of cataclastic samples in brittle-plastic transition zone of the Red River Fault, and combined with previous studies, we concluded that the brittle fracture and fracture healing is the main deformation mode at brittle-plastic transition zone in the post-seismic relaxation. High stress and high strain rate at post-seismic relaxation lead to brittle fracture of high-strength minerals such as feldspar in rocks. Plastic deformation occurs in low-strength minerals such as quartz and mica. Under the fluid condition, micro-fractures were healed by quartz and calcite. The minerals such as quartz and calcite in the fracture transformed from static recrystallization to dynamic recrystallization with stress gradually accumulating. With fracture healing and stress accumulation, the fault strength gradually increases which could accumulate energy for the next earthquake.
    ZHANG Shu, HE Chang-rong
    2019, 41(4):  1012-1026.  DOI: 10.3969/j.issn.0253-4967.2019.04.013
    Asbtract ( )   HTML   PDF (5166KB) ( )  
    References | Related Articles | Metrics
    To understand the mechanism of lower-crust earthquake and slow slips, it is necessary to study the frictional properties of mafic rocks and their major rock-forming minerals. Previous studies have performed a series of experimental researches on gabbro, basalt and their major constituents.
    According to the results of previous experiments, frictional sliding of plagioclase under hydrothermal conditions(100~600℃)shows a property of velocity weakening, and the experimental results show that both the direct rate effect parameter(a)and the healing effect parameter(b)increase with temperature, a typical feature for thermally-activated processes. Velocity weakening means property of a shear band that has a stronger friction healing effect than the direct rate effect in the rate and state friction constitutive framework, and the healing effect(b value)in constitutive relation mainly reflects the increase in contact area with time under hydrothermal conditions, with some minor effect of structural changes. Since the microphysical mechanism of feldspar minerals at the contacts is mainly brittle cataclasis for temperatures below 600℃, the significant frictional healing effect in this case can only be explained by the mechanism of pressure solution. In order to determine if the dissolution process of plagioclase actually occurs on the laboratory time scale, we conducted hydrostatic experiments on plagioclase powder samples under hydrothermal conditions whereby frequent contact switch between particles seen in frictional sliding experiments can be avoided, making the observation on the dissolution sites possible.
    Experimental temperatures were 400℃ and 500℃, with confining pressure of 90~150MPa, pore pressure of 30MPa, with 2mm initial thickness of fault gouge. The mechanical data show that a creep process occurred in the plagioclase fault gouge in the experimental temperature and pressure range; and the microstructures of the experiment show that precipitation of new grains is prevalent as the product of pressure solution process between plagioclase particles. At the same time, it is observed that the contact points have an appearance similar to fused, fuzzy structure as signatures of dissolution. The results of our experiments provide a definite experimental evidence for the healing mechanism in friction of plagioclase and for the theoretical relation between unstable slip and the pressure solution process.
    The results of the experiments are summarized as follows:
    (1)Drainage rate of pore water in plagioclase gouge was high in the first few hours of experiment, but gradually decreases over time for both temperature and pressure series of experiments slowing down to a steady state. This feature indicates that there is a creep process that evolves inside the plagioclase gouge.
    In the temperature-series experiments, the drainage rate of the pore water in the plagioclase gouge at 400℃ is relatively low than the cases for higher temperatures. Thus, the applied temperature is positively correlated with the creep of plagioclase gouge.
    (2)Scanning electron microscopy(SEM)observations of the experimentally deformed samples were performed on thin sections cut along the sample axis. Firstly, from the images of microstructure, it was found that the degree of particle fracture became more significant at a higher effective pressure, with smaller pore volume between particles. In the temperature-series experiments it was found that the degree of compaction of plagioclase gouge increased with increasing temperature. Precipitation of plagioclase grains in layered structures was generally observed in high-magnification images, indicating the presence of pressure solution processes. Contact points were also found to be in a state of ambiguity that seems to be a fused morphology, but the details of the structure remain to be determined by further observations.
    The above results indicate that the pressure solution process of plagioclase particles can occur on a typical laboratory time scale, and the results of this study provide robust experimental evidences for the theory that links between pressure solution and the mechanism of frictional healing and unstable slips for plagioclase.
    LIU Xiao-dong, SHAN Xin-jian, ZHANG Ying-feng, YIN Hao, QU Chun-yan
    2019, 41(4):  1027-1041.  DOI: 10.3969/j.issn.0253-4967.2019.04.014
    Asbtract ( )   HTML   PDF (8007KB) ( )  
    References | Related Articles | Metrics
    The development of high-rate GNSS seismology and seismic observation methods has provided technical support for acquiring the near-field real-time displacement time series during earthquake. But in practice, the limited number of GNSS continuous stations hardly meets the requirement of near-field quasi-real-time coseismic displacement observation, while the macroseismographs could be an important complement. Compared with high-rate GNSS, macroseismograph has better sensitivity, higher resolution(100~200Hz)and larger dynamic range, and the most importantly, lower cost. However, baseline drift exists in strong-motion data, which limits its widespread use. This paper aims to prove the feasibility and reliability of strong motion data in acquiring seismic displacement sequences, as a supplement to high-rate GNSS.
    In this study, we have analyzed the strong-motion data of Wenchuan MS8.0 earthquake in Longmenshan fault zone, based on the automatic scheme for empirical baseline correction proposed by Wang et al., which fits the uncorrected displacement by polynomial to obtain the fitting parameters, and then the baseline correction is completed in the velocity sequence. Through correction processing and quadratic integration, the static coseismic displacement field and displacement time series are obtained. Comparison of the displacement time series from the strong motions with the result of high-rate GPS shows a good coincidence. We have worked out the coseismic displacement field in the large area of Wenchuan earthquake using GPS data and strong motion data. The coseismic displacement fields calculated from GPS and strong motions are consistent with each other in terms of magnitude, direction and distribution patterns. High-precision coseismic deformation can provide better data constraint for fault slip inversion. To verify the influence of strong-motion data on slip distribution in Wenchuan earthquake, we used strong motion, GPS and InSAR data to estimate the stress drop, moment magnitude and coseismic slip model, and our results agreed with those of the previous studies. In addition, the inversion results of different data are different and complementary to some extent. The use of strong-motion data supplements the slip of the fault in the 180km segment and the 270~300km segment, thus making the inversion results of fault slip more comprehensive.
    From this result, we can draw the following conclusions:1)Based on the robust baseline correction method, the use of strong motion data, as an important complement to high-rate GNSS, can obtain reliable surface displacement after the earthquake. 2)The strong motion data provide an effective method to study the coseismic displacement sequence, the surface rupture process and quick seismogenic parameters acquisition. 3)The combination of multiple data can significantly improve the data coverage and give play to the advantages of different data. Therefore, it is suggested to combine multiple data(GPS, strong motion, InSAR, etc.)for joint inversion to improve the stability of fault slip model.
    HOU Zheng-yang, WANG Cheng-hu, WANG Pu, JIANG Ying-hao, YANG Ru-hua
    2019, 41(4):  1042-1059.  DOI: 10.3969/j.issn.0253-4967.2019.04.015
    Asbtract ( )   HTML   PDF (7747KB) ( )  
    References | Related Articles | Metrics
    The acquisition of paleostress data has always been a key and difficult problem in the field of tectonics and crustal dynamics. Previous findings show that the distribution of dykes and the alignment of volcano vents can indicate the direction of major principal stresses during the volcanic eruption period. The extension direction of underground dyke is generally parallel to the linear arrangement direction of vent and both of them give the direction of maximum horizontal principal stress in this period. This law has similar mechanical principle to hydraulic fracturing. Vent alignment survey method is a kind of geostress inversion method based on volcanic linear mode. In this paper theoretical basis of vent alignment survey method and the linear model of volcanic array are introduced. Based on the panchromatic high-resolution remote sensing image and digital elevation model(DEM)data in the Tengchong area, combining the geological exploration data about lithologic distribution of igneous rocks and the past research results of volcanic activities in the area, the research divides the volcanoes in this area, according to the age of volcanic eruption, into Holocene, late Pleistocene, early Pleistocene and Pliocene. Nakamura model was established based on the morphological characteristics and spatial distribution of the crater, and volcanic eruption period to evaluate the linear degree of the volcano in different age, and to carry out inversion of the paleostress field of the four volcanic eruption periods in Tengchong area. The reliability of the inversion results is evaluated according to Paulsen's data reliability assessment system. The data from inverting the paleostress of each show that maximum horizontal principal stress directions in the early Pleistocene period and late Pleistocene period are 39° and 37° respectively and reliability grades of inverted paleostress results in the two eras all belong to grade B; Inverted paleostress results in Holocene and Pliocene are not reliable because of the poor linearity of volcanic arrangement. The geostress direction determined by the vent alignment survey method is fairly consistent with the current geostress field obtained by the focal mechanism solution and the anelastic strain recovery(ASR method)and matches the tectonic history of Tengchong area since Neogene. The research findings demonstrate that the vent alignment survey method is an effective paleostress inversion method. The application of this method in the paleostress inversion of the Tengchong volcanic area is of important reference significance for the study of paleostress field in other volcanic areas in China.
    ZHU Cheng-ying, ZHOU Xiao-cheng, MA Rong, YAN Wei, LIANG Hui, ZHANG Tao, GAO Xiao-qi, YAN Yu-cong
    2019, 41(4):  1060-1075.  DOI: 10.3969/j.issn.0253-4967.2019.04.016
    Asbtract ( )   HTML   PDF (7713KB) ( )  
    References | Related Articles | Metrics
    Mud volcano is a conical sedimentary body formed by high-pressure mud and gas-dominated fluid migrated to the surface through faults and other channels deep underground, which looks like a volcanic cone formed by magma-volcanism. As a product of crustal movement, mud volcano can bring a large amount of valuable information from deep to the surface when erupting. Therefore, mud volcano is called "god-given borehole" with a depth of 7~12km. Mud volcanoes are the result of upthrust of trapped gases released by the pressure in the stratum and also the channel for the upward migration of gases in the earth. The submarine mud volcano is one of the signs of hydrate and the living evidence of hydrate. The Wusu mud volcanoes are located in the northern Tianshan tectonic belt. Since the mud volcamoes locate in the active part of the tectonic belt and are well connected to the underground, their active degree has a good correlation with the seismicity. The earthquake cases studies based on the 7a long real-time macroscopic monitoring data and the more than 3a long geochemical monitoring data of the Wusu mud volcanoes show that in the earthquake cases of MS ≥ 5.0 within the range of 300km around the Wusu mud volcanoes, the abnormal mud gushing quantity obviously increased by macroscopic monitoring before 9 out of 13 earthquakes. The geochemical microcosmic monitoring data showed obvious abnormal changes before 3 out of 6 earthquakes. The anomalous duration from the emergence of the anomaly to the occurrence of the earthquake is mainly of the mid-term(6~12 months). Before the Jinghe MS6.6 earthquake on August 9, 2017, the Wusu mud volcanoes spewed violently and the chemical components showed an obvious high value anomaly. In January 2017, there was a significant increase in the amount of mud spewing in Aiqigou No.1mud volcano and Baiyanggou No.1mud volcano, and one month before the earthquake, there was the phenomenon that mud gushing amount of Aiqigou No.2 mud volcano gradually increased and the volcano was from dormant to active. There were obvious high values appearing before the earthquake in F-and SO42- in the Aiqigou No.1mud volcano and in F-, CO32-, SO42-, Rn(gas), CH4, Ar and N2 in Baiyanggou(No.1 and 2)mud volcanoes. The values of F-, CO32-, SO42-, Ar and N2 showed short-term anomalies, while CH4 and Rn(gas)showed medium term anomalies. Giggenbach triangular diagram (Na-K-Mg) indicates that the water-rock reaction of Baiyanggou mud volcanoes is complete and little disturbed by the outside. The water-rock reaction of the Aiqigou mud volcanoes is still ongoing, which can explain why the precursor anomaly of the chemical components of the Baiyanggou mud volcanoes is more obvious than that of the Aiqigou mud volcanoes. The geothermal reservoir temperature of the study area is estimated by using a cationic (Na-K, K-Mg, Na-K-Ca) geothermometer. The geothermal reservoir temperature of the Wusu mud volcanoes is about 70℃, and the circulation depth is about 3km. In the process of earthquake preparation, the mud carries deep chemical components to the ground surface due to the effect of compression stress(the result of focal mechanism)or the concentration of regional tectonic stress with earthquake preparation; Or the rock strata in or near the seismogenic area are deformed, the depth of liquid circulation will increase, and the water-rock reaction will be accelerated, which will increase the concentration of some ionic components, and the squeezing process will cause a large number of mud to gush out of the ground, carrying geochemical components. Therefore, the gushing quantity and some chemical components of the mud volcanoes were obviously abnormal before the earthquake.